IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i3p431-441.html
   My bibliography  Save this article

Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential

Author

Listed:
  • Satoshi Suzuki
  • Daishi Kuroiwa

Abstract

In convex programming, characterizations of the solution set in terms of the subdifferential have been investigated by Mangasarian. An invariance property of the subdifferential of the objective function is studied, and as a consequence, characterizations of the solution set by any solution point and any point in the relative interior of the solution set are given. In quasiconvex programming, however, characterizations of the solution set by any solution point and an invariance property of Greenberg–Pierskalla subdifferential, which is one of the well known subdifferential for quasiconvex functions, have not been studied yet as far as we know. In this paper, we study characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential. To the purpose, we show an invariance property of Greenberg–Pierskalla subdifferential, and we introduce a necessary and sufficient optimality condition by Greenberg–Pierskalla subdifferential. Also, we compare our results with previous ones. Especially, we prove some of Mangasarian’s characterizations as corollaries of our results. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Satoshi Suzuki & Daishi Kuroiwa, 2015. "Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 62(3), pages 431-441, July.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:3:p:431-441
    DOI: 10.1007/s10898-014-0255-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0255-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0255-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.P. Penot, 2003. "Characterization of Solution Sets of Quasiconvex Programs," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 627-636, June.
    2. Satoshi Suzuki & Daishi Kuroiwa, 2013. "Some constraint qualifications for quasiconvex vector-valued systems," Journal of Global Optimization, Springer, vol. 55(3), pages 539-548, March.
    3. V. Jeyakumar & G. M. Lee & N. Dinh, 2004. "Lagrange Multiplier Conditions Characterizing the Optimal Solution Sets of Cone-Constrained Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 123(1), pages 83-103, October.
    4. X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
    5. Jean-Paul Penot & Michel Volle, 1990. "On Quasi-Convex Duality," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 597-625, November.
    6. Z. L. Wu & S. Y. Wu, 2006. "Characterizations of the Solution Sets of Convex Programs and Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 341-360, August.
    7. Vsevolod Ivanov, 2013. "Characterizations of pseudoconvex functions and semistrictly quasiconvex ones," Journal of Global Optimization, Springer, vol. 57(3), pages 677-693, November.
    8. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    9. Vsevolod I. Ivanov, 2013. "Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 65-84, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vsevolod I. Ivanov, 2020. "Characterization of Radially Lower Semicontinuous Pseudoconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 368-383, February.
    2. Satoshi Suzuki, 2019. "Optimality Conditions and Constraint Qualifications for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 963-976, December.
    3. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    4. Xiangkai Sun & Kok Lay Teo & Liping Tang, 2019. "Dual Approaches to Characterize Robust Optimal Solution Sets for a Class of Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 984-1000, September.
    5. Shashi Kant Mishra & Vivek Laha & Mohd Hassan, 2024. "On Quasiconvex Multiobjective Optimization and Variational Inequalities Using Greenberg–Pierskalla Based Generalized Subdifferentials," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1169-1186, September.
    6. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.
    7. Vsevolod I. Ivanov, 2019. "Characterizations of Solution Sets of Differentiable Quasiconvex Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 144-162, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoshi Suzuki, 2019. "Optimality Conditions and Constraint Qualifications for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 963-976, December.
    2. Vsevolod I. Ivanov, 2019. "Characterizations of Solution Sets of Differentiable Quasiconvex Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 144-162, April.
    3. Vsevolod I. Ivanov, 2013. "Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 65-84, July.
    4. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    5. Satoshi Suzuki & Daishi Kuroiwa, 2017. "Duality Theorems for Separable Convex Programming Without Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 669-683, February.
    6. V. Jeyakumar & G. M. Lee & G. Li, 2015. "Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 407-435, February.
    7. X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
    8. Xiangkai Sun & Kok Lay Teo & Liping Tang, 2019. "Dual Approaches to Characterize Robust Optimal Solution Sets for a Class of Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 984-1000, September.
    9. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.
    10. Satoshi Suzuki & Daishi Kuroiwa, 2020. "Duality Theorems for Convex and Quasiconvex Set Functions," SN Operations Research Forum, Springer, vol. 1(1), pages 1-13, March.
    11. Jean-Paul Penot, 2015. "Projective dualities for quasiconvex problems," Journal of Global Optimization, Springer, vol. 62(3), pages 411-430, July.
    12. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    13. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2015. "Portfolio Optimization with Quasiconvex Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1042-1059, October.
    14. J.P. Penot, 2003. "Lagrangian Approach to Quasiconvex Programing," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 637-647, June.
    15. Vsevolod I. Ivanov, 2020. "Characterization of Radially Lower Semicontinuous Pseudoconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 368-383, February.
    16. Suzuki, Satoshi & Kuroiwa, Daishi & Lee, Gue Myung, 2013. "Surrogate duality for robust optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 257-262.
    17. S. K. Mishra & B. B. Upadhyay & Le Thi Hoai An, 2014. "Lagrange Multiplier Characterizations of Solution Sets of Constrained Nonsmooth Pseudolinear Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 763-777, March.
    18. Satoshi Suzuki & Daishi Kuroiwa, 2011. "On Set Containment Characterization and Constraint Qualification for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 554-563, June.
    19. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    20. A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:3:p:431-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.