IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i3p411-430.html
   My bibliography  Save this article

Projective dualities for quasiconvex problems

Author

Listed:
  • Jean-Paul Penot

Abstract

We study two dualities that can be applied to quasiconvex problems. They are conjugacies deduced from polarities. They are characterized by the polar sets of sublevel sets. We give some calculus rules for the associated subdifferentials and we relate the subdifferentials to known subdifferentials. We adapt the general duality schemes in terms of Lagrangians or in terms of perturbations to two specific problems. First a general mathematical programming problem and then a programming problem with linear constraints. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Jean-Paul Penot, 2015. "Projective dualities for quasiconvex problems," Journal of Global Optimization, Springer, vol. 62(3), pages 411-430, July.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:3:p:411-430
    DOI: 10.1007/s10898-014-0261-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0261-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0261-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Paul Penot, 2005. "Unilateral Analysis and Duality," Springer Books, in: Charles Audet & Pierre Hansen & Gilles Savard (ed.), Essays and Surveys in Global Optimization, chapter 0, pages 1-37, Springer.
    2. Jean-Paul Penot & Michel Volle, 1990. "On Quasi-Convex Duality," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 597-625, November.
    3. Harvey J. Greenberg & William P. Pierskalla, 1971. "A Review of Quasi-Convex Functions," Operations Research, INFORMS, vol. 19(7), pages 1553-1570, December.
    4. J.P. Penot, 2003. "Characterization of Solution Sets of Quasiconvex Programs," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 627-636, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.
    2. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2015. "Portfolio Optimization with Quasiconvex Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1042-1059, October.
    3. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    4. Satoshi Suzuki & Daishi Kuroiwa, 2015. "Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 62(3), pages 431-441, July.
    5. Jean-Paul Penot, 2010. "Are dualities appropriate for duality theories in optimization?," Journal of Global Optimization, Springer, vol. 47(3), pages 503-525, July.
    6. J.P. Penot, 2003. "Lagrangian Approach to Quasiconvex Programing," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 637-647, June.
    7. Satoshi Suzuki, 2019. "Optimality Conditions and Constraint Qualifications for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 963-976, December.
    8. Kieran Donaghy, 2011. "Models of travel demand with endogenous preference change and heterogeneous agents," Journal of Geographical Systems, Springer, vol. 13(1), pages 17-30, March.
    9. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    10. A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.
    11. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    12. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Luigi Montrucchio, 2008. "Complete Monotone Quasiconcave Duality," Carlo Alberto Notebooks 80, Collegio Carlo Alberto.
    13. Satoshi Suzuki, 2010. "Set containment characterization with strict and weak quasiconvex inequalities," Journal of Global Optimization, Springer, vol. 47(2), pages 273-285, June.
    14. M. Volle & J. E. Martínez-Legaz & J. Vicente-Pérez, 2015. "Duality for Closed Convex Functions and Evenly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 985-997, December.
    15. Michael Jong Kim, 2016. "Robust Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 64(4), pages 999-1014, August.
    16. Carlo Alberto Bernardi, 2020. "On the Extension of Continuous Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 421-430, November.
    17. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    18. Cerreia-Vioglio, S. & Maccheroni, F. & Marinacci, M. & Montrucchio, L., 2011. "Uncertainty averse preferences," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1275-1330, July.
    19. Javier Cabello S'anchez & Juan Antonio Fern'andez Torvisco & Mariano R. Arias, 2024. "TAC Method for Fitting Exponential Autoregressive Models and Others: Applications in Economy and Finance," Papers 2402.04138, arXiv.org.
    20. Ricci, Roberto Ghiselli, 2015. "Penalty functions based upon a general class of restricted dissimilarity functions," European Journal of Operational Research, Elsevier, vol. 241(3), pages 806-814.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:3:p:411-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.