IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v231y2013i2p257-262.html
   My bibliography  Save this article

Surrogate duality for robust optimization

Author

Listed:
  • Suzuki, Satoshi
  • Kuroiwa, Daishi
  • Lee, Gue Myung

Abstract

Robust optimization problems, which have uncertain data, are considered. We prove surrogate duality theorems for robust quasiconvex optimization problems and surrogate min–max duality theorems for robust convex optimization problems. We give necessary and sufficient constraint qualifications for surrogate duality and surrogate min–max duality, and show some examples at which such duality results are used effectively. Moreover, we obtain a surrogate duality theorem and a surrogate min–max duality theorem for semi-definite optimization problems in the face of data uncertainty.

Suggested Citation

  • Suzuki, Satoshi & Kuroiwa, Daishi & Lee, Gue Myung, 2013. "Surrogate duality for robust optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 257-262.
  • Handle: RePEc:eee:ejores:v:231:y:2013:i:2:p:257-262
    DOI: 10.1016/j.ejor.2013.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713001999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Paul Penot & Michel Volle, 1990. "On Quasi-Convex Duality," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 597-625, November.
    2. Fred Glover, 1965. "A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem," Operations Research, INFORMS, vol. 13(6), pages 879-919, December.
    3. Harvey J. Greenberg & William P. Pierskalla, 1970. "Surrogate Mathematical Programming," Operations Research, INFORMS, vol. 18(5), pages 924-939, October.
    4. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satoshi Suzuki & Daishi Kuroiwa, 2017. "Duality Theorems for Separable Convex Programming Without Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 669-683, February.
    2. Crespi, Giovanni P. & Kuroiwa, Daishi & Rocca, Matteo, 2018. "Robust optimization: Sensitivity to uncertainty in scalar and vector cases, with applications," Operations Research Perspectives, Elsevier, vol. 5(C), pages 113-119.
    3. Jae Hyoung Lee & Gue Myung Lee, 2018. "On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems," Annals of Operations Research, Springer, vol. 269(1), pages 419-438, October.
    4. Satoshi Suzuki & Daishi Kuroiwa, 2020. "Duality Theorems for Convex and Quasiconvex Set Functions," SN Operations Research Forum, Springer, vol. 1(1), pages 1-13, March.
    5. Nguyen Dinh & Miguel Angel Goberna & Marco Antonio López & Michel Volle, 2017. "A Unifying Approach to Robust Convex Infinite Optimization Duality," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 650-685, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoshi Suzuki & Daishi Kuroiwa, 2020. "Duality Theorems for Convex and Quasiconvex Set Functions," SN Operations Research Forum, Springer, vol. 1(1), pages 1-13, March.
    2. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    3. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
    4. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    5. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    6. Satoshi Suzuki & Daishi Kuroiwa, 2017. "Duality Theorems for Separable Convex Programming Without Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 669-683, February.
    7. Satoshi Suzuki & Daishi Kuroiwa, 2015. "Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 62(3), pages 431-441, July.
    8. Ablanedo-Rosas, José H. & Rego, César, 2010. "Surrogate constraint normalization for the set covering problem," European Journal of Operational Research, Elsevier, vol. 205(3), pages 540-551, September.
    9. Satoshi Suzuki, 2019. "Optimality Conditions and Constraint Qualifications for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 963-976, December.
    10. Edirisinghe, Chanaka & Jeong, Jaehwan, 2019. "Indefinite multi-constrained separable quadratic optimization: Large-scale efficient solution," European Journal of Operational Research, Elsevier, vol. 278(1), pages 49-63.
    11. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    12. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    13. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    14. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.
    15. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    16. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Luigi Montrucchio, 2008. "Complete Monotone Quasiconcave Duality," Carlo Alberto Notebooks 80, Collegio Carlo Alberto.
    17. Satoshi Suzuki, 2010. "Set containment characterization with strict and weak quasiconvex inequalities," Journal of Global Optimization, Springer, vol. 47(2), pages 273-285, June.
    18. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    19. Saïd Hanafi & Christophe Wilbaut, 2011. "Improved convergent heuristics for the 0-1 multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 183(1), pages 125-142, March.
    20. Jean-Paul Penot, 2015. "Projective dualities for quasiconvex problems," Journal of Global Optimization, Springer, vol. 62(3), pages 411-430, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:231:y:2013:i:2:p:257-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.