IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v59y2014i2p307-326.html
   My bibliography  Save this article

On the computation of all eigenvalues for the eigenvalue complementarity problem

Author

Listed:
  • Luís Fernandes
  • Joaquim Júdice
  • Hanif Sherali
  • Masao Fukushima

Abstract

In this paper, a parametric algorithm is introduced for computing all eigenvalues for two Eigenvalue Complementarity Problems discussed in the literature. The algorithm searches a finite number of nested intervals $$[\bar{l}, \bar{u}]$$ [ l ¯ , u ¯ ] in such a way that, in each iteration, either an eigenvalue is computed in $$[\bar{l}, \bar{u}]$$ [ l ¯ , u ¯ ] or a certificate of nonexistence of an eigenvalue in $$[\bar{l}, \bar{u}]$$ [ l ¯ , u ¯ ] is provided. A hybrid method that combines an enumerative method [ 1 ] and a semi-smooth algorithm [ 2 ] is discussed for dealing with the Eigenvalue Complementarity Problem over an interval $$[\bar{l}, \bar{u}]$$ [ l ¯ , u ¯ ] . Computational experience is presented to illustrate the efficacy and efficiency of the proposed techniques. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Luís Fernandes & Joaquim Júdice & Hanif Sherali & Masao Fukushima, 2014. "On the computation of all eigenvalues for the eigenvalue complementarity problem," Journal of Global Optimization, Springer, vol. 59(2), pages 307-326, July.
  • Handle: RePEc:spr:jglopt:v:59:y:2014:i:2:p:307-326
    DOI: 10.1007/s10898-014-0165-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0165-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0165-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoai Le Thi & Mahdi Moeini & Tao Pham Dinh & Joaquim Judice, 2012. "A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1097-1117, April.
    2. A. Pinto da Costa & A. Seeger, 2010. "Cone-constrained eigenvalue problems: theory and algorithms," Computational Optimization and Applications, Springer, vol. 45(1), pages 25-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquim Júdice & Valentina Sessa & Masao Fukushima, 2022. "Solution of Fractional Quadratic Programs on the Simplex and Application to the Eigenvalue Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 545-573, June.
    2. Chen Ling & Hongjin He & Liqun Qi, 2016. "Higher-degree eigenvalue complementarity problems for tensors," Computational Optimization and Applications, Springer, vol. 64(1), pages 149-176, May.
    3. Brás, Carmo P. & Fischer, Andreas & Júdice, Joaquim J. & Schönefeld, Klaus & Seifert, Sarah, 2017. "A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 36-48.
    4. Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.
    2. Brás, Carmo P. & Fukushima, Masao & Iusem, Alfredo N. & Júdice, Joaquim J., 2015. "On the Quadratic Eigenvalue Complementarity Problem over a general convex cone," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 594-608.
    3. Carmo P. Brás & Joaquim J. Júdice & Hanif D. Sherali, 2014. "On the Solution of the Inverse Eigenvalue Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 88-106, July.
    4. Masao Fukushima & Joaquim Júdice & Welington Oliveira & Valentina Sessa, 2020. "A sequential partial linearization algorithm for the symmetric eigenvalue complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 711-728, December.
    5. Luís Fernandes & Joaquim Júdice & Hanif Sherali & Maria Forjaz, 2014. "On an enumerative algorithm for solving eigenvalue complementarity problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 113-134, October.
    6. Fatemeh Abdi & Fatemeh Shakeri, 2017. "A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 923-940, June.
    7. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    8. Hoai An Thi & Thi Minh Tam Nguyen & Tao Pham Dinh, 2023. "On solving difference of convex functions programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 163-197, September.
    9. Chen Ling & Hongjin He & Liqun Qi, 2016. "On the cone eigenvalue complementarity problem for higher-order tensors," Computational Optimization and Applications, Springer, vol. 63(1), pages 143-168, January.
    10. Pinto da Costa, A. & Seeger, A. & Simões, F.M.F., 2017. "Complementarity eigenvalue problems for nonlinear matrix pencils," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 134-148.
    11. Chuangchuang Sun, 2023. "A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming," Mathematics, MDPI, vol. 11(21), pages 1-27, October.
    12. Pedro Gajardo & Alberto Seeger, 2012. "Reconstructing a matrix from a partial sampling of Pareto eigenvalues," Computational Optimization and Applications, Springer, vol. 51(3), pages 1119-1135, April.
    13. Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
    14. Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
    15. Brás, Carmo P. & Fischer, Andreas & Júdice, Joaquim J. & Schönefeld, Klaus & Seifert, Sarah, 2017. "A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 36-48.
    16. Mahdi Moeini, 2022. "Solving the index tracking problem: a continuous optimization approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 807-835, June.
    17. Le Thi, H.A. & Pham Dinh, T. & Le, H.M. & Vo, X.T., 2015. "DC approximation approaches for sparse optimization," European Journal of Operational Research, Elsevier, vol. 244(1), pages 26-46.
    18. Chen Ling & Hongjin He & Liqun Qi, 2016. "Higher-degree eigenvalue complementarity problems for tensors," Computational Optimization and Applications, Springer, vol. 64(1), pages 149-176, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:59:y:2014:i:2:p:307-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.