Reconstructing a matrix from a partial sampling of Pareto eigenvalues
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-010-9391-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- A. Pinto da Costa & A. Seeger, 2010. "Cone-constrained eigenvalue problems: theory and algorithms," Computational Optimization and Applications, Springer, vol. 45(1), pages 25-57, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alberto Seeger & David Sossa, 2015. "Complementarity problems with respect to Loewnerian cones," Journal of Global Optimization, Springer, vol. 62(2), pages 299-318, June.
- Carmo P. Brás & Joaquim J. Júdice & Hanif D. Sherali, 2014. "On the Solution of the Inverse Eigenvalue Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 88-106, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
- Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.
- Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
- Brás, Carmo P. & Fukushima, Masao & Iusem, Alfredo N. & Júdice, Joaquim J., 2015. "On the Quadratic Eigenvalue Complementarity Problem over a general convex cone," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 594-608.
- Chen Ling & Hongjin He & Liqun Qi, 2016. "On the cone eigenvalue complementarity problem for higher-order tensors," Computational Optimization and Applications, Springer, vol. 63(1), pages 143-168, January.
- Brás, Carmo P. & Fischer, Andreas & Júdice, Joaquim J. & Schönefeld, Klaus & Seifert, Sarah, 2017. "A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 36-48.
- Luís Fernandes & Joaquim Júdice & Hanif Sherali & Maria Forjaz, 2014. "On an enumerative algorithm for solving eigenvalue complementarity problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 113-134, October.
- Pinto da Costa, A. & Seeger, A. & Simões, F.M.F., 2017. "Complementarity eigenvalue problems for nonlinear matrix pencils," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 134-148.
- Carmo P. Brás & Joaquim J. Júdice & Hanif D. Sherali, 2014. "On the Solution of the Inverse Eigenvalue Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 88-106, July.
- Luís Fernandes & Joaquim Júdice & Hanif Sherali & Masao Fukushima, 2014. "On the computation of all eigenvalues for the eigenvalue complementarity problem," Journal of Global Optimization, Springer, vol. 59(2), pages 307-326, July.
- Fatemeh Abdi & Fatemeh Shakeri, 2017. "A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 923-940, June.
- Chuangchuang Sun, 2023. "A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming," Mathematics, MDPI, vol. 11(21), pages 1-27, October.
- Chen Ling & Hongjin He & Liqun Qi, 2016. "Higher-degree eigenvalue complementarity problems for tensors," Computational Optimization and Applications, Springer, vol. 64(1), pages 149-176, May.
- Masao Fukushima & Joaquim Júdice & Welington Oliveira & Valentina Sessa, 2020. "A sequential partial linearization algorithm for the symmetric eigenvalue complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 711-728, December.
More about this item
Keywords
Cone-constrained eigenvalue problem; Pareto spectrum; Inverse Pareto eigenvalue problem; Newton method; Normal flow algorithm; Underdetermined system of equations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:51:y:2012:i:3:p:1119-1135. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.