IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v55y2013i4p813-830.html
   My bibliography  Save this article

Semi-infinite programming method for optimal power flow with transient stability and variable clearing time of faults

Author

Listed:
  • Xiaojiao Tong
  • Chen Ling
  • Soon-Yi Wu
  • Liqun Qi

Abstract

This paper presents a new nonlinear programming problem arising in the control of power systems, called optimal power flow with transient stability constraint and variable clearing time of faults and abbreviated as OTS-VT. The OTS-VT model is converted into a implicit generalized semi-infinite programming (GSIP) problem. According to the special box structure of the reformulated GSIP, a solution method based on bi-level optimization is proposed. The research in this paper has two contributions. Firstly, it generalizes the OTS study to general optimal power flow with transient stability problems. From the viewpoint of practical applications, the proposed research can improve the decision-making ability in power system operations. Secondly, the reformulation of OTS-VT also provides a new background and a type of GSIP in the research of mathematical problems. Numerical results for two chosen power systems show that the methodology presented in this paper is effective and promising. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Xiaojiao Tong & Chen Ling & Soon-Yi Wu & Liqun Qi, 2013. "Semi-infinite programming method for optimal power flow with transient stability and variable clearing time of faults," Journal of Global Optimization, Springer, vol. 55(4), pages 813-830, April.
  • Handle: RePEc:spr:jglopt:v:55:y:2013:i:4:p:813-830
    DOI: 10.1007/s10898-011-9812-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9812-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9812-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    2. J. J. Ye & S. Y. Wu, 2008. "First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 419-434, May.
    3. Xiaojiao Tong & Soon-Yi Wu & Renjun Zhou, 2010. "New approach for the nonlinear programming with transient stability constraints arising from power systems," Computational Optimization and Applications, Springer, vol. 45(3), pages 495-520, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.
    2. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
    3. Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
    4. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    5. S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
    6. Xiaojiao Tong & Soon-Yi Wu & Renjun Zhou, 2010. "New approach for the nonlinear programming with transient stability constraints arising from power systems," Computational Optimization and Applications, Springer, vol. 45(3), pages 495-520, April.
    7. Takayuki Okuno & Masao Fukushima, 2014. "Local reduction based SQP-type method for semi-infinite programs with an infinite number of second-order cone constraints," Journal of Global Optimization, Springer, vol. 60(1), pages 25-48, September.
    8. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    9. Jiachen Ju & Qian Liu, 2020. "Convergence properties of a class of exact penalty methods for semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 383-403, June.
    10. Chen Ling & Qin Ni & Liqun Qi & Soon-Yi Wu, 2010. "A new smoothing Newton-type algorithm for semi-infinite programming," Journal of Global Optimization, Springer, vol. 47(1), pages 133-159, May.
    11. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    12. Qian Liu & Changyu Wang & Xinmin Yang, 2013. "On the convergence of a smoothed penalty algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 203-220, October.
    13. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    14. Nader Kanzi, 2013. "Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems," Journal of Global Optimization, Springer, vol. 56(2), pages 417-430, June.
    15. Ping Jin & Chen Ling & Huifei Shen, 2015. "A smoothing Levenberg–Marquardt algorithm for semi-infinite programming," Computational Optimization and Applications, Springer, vol. 60(3), pages 675-695, April.
    16. Thinh, Vo Duc & Chuong, Thai Doan & Le Hoang Anh, Nguyen, 2023. "Formulas of first-ordered and second-ordered generalization differentials for convex robust systems with applications," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    17. M. A. Goberna & M. A. López, 2017. "Recent contributions to linear semi-infinite optimization," 4OR, Springer, vol. 15(3), pages 221-264, September.
    18. C. Ling & L. Q. Qi & G. L. Zhou & S. Y. Wu, 2006. "Global Convergence of a Robust Smoothing SQP Method for Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 147-164, April.
    19. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.
    20. Yin-Yin Huang & I-Fei Chen & Chien-Liang Chiu & Ruey-Chyn Tsaur, 2021. "Adjustable Security Proportions in the Fuzzy Portfolio Selection under Guaranteed Return Rates," Mathematics, MDPI, vol. 9(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:55:y:2013:i:4:p:813-830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.