IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v56y2013i2p417-430.html
   My bibliography  Save this article

Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems

Author

Listed:
  • Nader Kanzi

Abstract

This paper aims to study a broad class of generalized semi-infinite programming problems with (upper and lower level) objectives given as the difference of two convex functions, and (lower level) constraints described by a finite number of convex inequalities and a set constraints. First, we are interested in some various lower level constraint qualifications for the problem. Then, the results are used to establish efficient upper estimate of certain subdifferential of value functions. Finally, we apply the obtained subdifferential estimates to derive necessary optimality conditions for the problem. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Nader Kanzi, 2013. "Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems," Journal of Global Optimization, Springer, vol. 56(2), pages 417-430, June.
  • Handle: RePEc:spr:jglopt:v:56:y:2013:i:2:p:417-430
    DOI: 10.1007/s10898-011-9828-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9828-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9828-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliver Stein, 2001. "First-Order Optimality Conditions for Degenerate Index Sets in Generalized Semi-Infinite Optimization," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 565-582, August.
    2. J. J. Ye & S. Y. Wu, 2008. "First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 419-434, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
    2. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
    3. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    4. Goberna, M.A. & Guerra-Vazquez, F. & Todorov, M.I., 2013. "Constraint qualifications in linear vector semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 227(1), pages 12-21.
    5. Xiaojiao Tong & Chen Ling & Soon-Yi Wu & Liqun Qi, 2013. "Semi-infinite programming method for optimal power flow with transient stability and variable clearing time of faults," Journal of Global Optimization, Springer, vol. 55(4), pages 813-830, April.
    6. M. Diehl & B. Houska & O. Stein & P. Steuermann, 2013. "A lifting method for generalized semi-infinite programs based on lower level Wolfe duality," Computational Optimization and Applications, Springer, vol. 54(1), pages 189-210, January.
    7. Goberna, M.A. & Guerra-Vazquez, F. & Todorov, M.I., 2016. "Constraint qualifications in convex vector semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 32-40.
    8. Yin-Yin Huang & I-Fei Chen & Chien-Liang Chiu & Ruey-Chyn Tsaur, 2021. "Adjustable Security Proportions in the Fuzzy Portfolio Selection under Guaranteed Return Rates," Mathematics, MDPI, vol. 9(23), pages 1-18, November.
    9. O. Stein, 2004. "On Constraint Qualifications in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 647-671, June.
    10. J. J. Ye & S. Y. Wu, 2008. "First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 419-434, May.
    11. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:56:y:2013:i:2:p:417-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.