IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v8y2025i1d10.1007_s42001-024-00356-6.html
   My bibliography  Save this article

Substance use prediction using artificial intelligence techniques

Author

Listed:
  • Ali Unlu

    (University of Virginia
    Finnish Institute for Health and Welfare (THL)
    Aalto University)

  • Abdulhamit Subasi

    (State University of New York at Albany)

Abstract

Substance use poses a significant public health challenge worldwide, including in Finland. This study seeks to predict patterns of substance use, aiming to identify the driving factors behind these trends using artificial intelligence techniques. This research utilizes data from the 2022 Finnish National Drug Survey, comprising 3,857 participants, to develop predictive models targeting the use of cannabis, ecstasy, amphetamine, cocaine, and non-prescribed medications. Analysis of 23 questionnaire items yielded 76 features across four substance use dimensions: demographic attributes, experience and preferences of drug use, health-related aspects of drug use, and social attributes of drug use. In addition to traditional machine learning (ML) approaches previously applied in this field, three sophisticated deep learning models—standard LSTM, BiLSTM, and Recursive LSTM—were employed to evaluate their predictive performance. These LSTM models were further augmented with SHAP analysis to identify the primary influences on substance use patterns. While all these artificial intelligence models demonstrated superior predictive performance, our focus was specifically on the outcomes of the LSTM models due to their novel application in this field. The results underscore the exceptional performance of both LSTM and ML models in unraveling complex substance use behaviors, underlining their applicability in diverse public health contexts. This study not only sheds light on the predictors of substance uses but also furthers methodological innovation in drug research, charting new directions for crafting targeted intervention strategies and policies. The observed variability in predictor significance across different substances indicates the necessity for tailored prevention programs catering to particular user groups. Integrating machine learning with social science and public health policy, our research deepens the understanding of the factors influencing substance use and promotes effective strategies for its mitigation. Despite some limitations, this investigation establishes a foundation for future studies and accentuates the critical role of advanced computational techniques in addressing intricate social issues.

Suggested Citation

  • Ali Unlu & Abdulhamit Subasi, 2025. "Substance use prediction using artificial intelligence techniques," Journal of Computational Social Science, Springer, vol. 8(1), pages 1-40, February.
  • Handle: RePEc:spr:jcsosc:v:8:y:2025:i:1:d:10.1007_s42001-024-00356-6
    DOI: 10.1007/s42001-024-00356-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-024-00356-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-024-00356-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James V. Hansen, 2021. "Coalition Feature Interpretation and Attribution in Algorithmic Trading Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 849-866, October.
    2. Laura Acion & Diana Kelmansky & Mark van der Laan & Ethan Sahker & DeShauna Jones & Stephan Arndt, 2017. "Use of a machine learning framework to predict substance use disorder treatment success," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    3. Arindam Ray & Wolfgang Jank & Kaushik Dutta & Matthew Mullarkey, 2023. "An LSTM + Model for Managing Epidemics: Using Population Mobility and Vulnerability for Forecasting COVID-19 Hospital Admissions," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 440-457, March.
    4. Stephanie Yang & Hsueh-Chih Chen & Chih-Hsien Wu & Meng-Ni Wu & Cheng-Hong Yang, 2021. "Forecasting of the Prevalence of Dementia Using the LSTM Neural Network in Taiwan," Mathematics, MDPI, vol. 9(5), pages 1-19, February.
    5. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Feng Ding & Jian Pan & Ahmed Alsaedi & Tasawar Hayat, 2019. "Gradient-Based Iterative Parameter Estimation Algorithms for Dynamical Systems from Observation Data," Mathematics, MDPI, vol. 7(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    2. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Fei Chen & Zhiyang Wang & Yu He, 2023. "A Deep Neural Network-Based Optimal Scheduling Decision-Making Method for Microgrids," Energies, MDPI, vol. 16(22), pages 1-17, November.
    5. Wenchao Ban & Liangduo Shen, 2022. "PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    6. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    8. Amin Eshkiti & Fatemeh Sabouhi & Ali Bozorgi-Amiri, 2023. "A data-driven optimization model to response to COVID-19 pandemic: a case study," Annals of Operations Research, Springer, vol. 328(1), pages 337-386, September.
    9. Soto Calvo, Manuel & Lee, Han Soo & Chisale, Sylvester William, 2024. "A novel method for long-term power demand prediction using enhanced data decomposition and neural network with integrated uncertainty analysis: A Cuba case study," Applied Energy, Elsevier, vol. 372(C).
    10. Balduíno César Mateus & Mateus Mendes & José Torres Farinha & Rui Assis & António Marques Cardoso, 2021. "Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press," Energies, MDPI, vol. 14(21), pages 1-21, October.
    11. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    12. Alexander Engels & Katrin C Reber & Ivonne Lindlbauer & Kilian Rapp & Gisela Büchele & Jochen Klenk & Andreas Meid & Clemens Becker & Hans-Helmut König, 2020. "Osteoporotic hip fracture prediction from risk factors available in administrative claims data – A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
    13. Naheliya, Bharti & Redhu, Poonam & Kumar, Kranti, 2024. "MFOA-Bi-LSTM: An optimized bidirectional long short-term memory model for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    14. Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    15. Yong Wang & Hui Wang & Xiaoqiang Guo & Xinhua Liu & Xiaowen Liu, 2022. "State Prediction Method for A-Class Insulation Board Production Line Based on Transfer Learning," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    16. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    18. Zhichao Li, 2022. "Forecasting Weekly Dengue Cases by Integrating Google Earth Engine-Based Risk Predictor Generation and Google Colab-Based Deep Learning Modeling in Fortaleza and the Federal District, Brazil," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    19. Xujian Zhao & Wei Li, 2021. "Trend Prediction of Event Popularity from Microblogs," Future Internet, MDPI, vol. 13(9), pages 1-13, August.
    20. Yong-Ju Jang & Min-Seung Kim & Chan-Ho Lee & Ji-Hye Choi & Jeong-Hee Lee & Sun-Hong Lee & Tae-Eung Sung, 2022. "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:8:y:2025:i:1:d:10.1007_s42001-024-00356-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.