IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0175383.html
   My bibliography  Save this article

Use of a machine learning framework to predict substance use disorder treatment success

Author

Listed:
  • Laura Acion
  • Diana Kelmansky
  • Mark van der Laan
  • Ethan Sahker
  • DeShauna Jones
  • Stephan Arndt

Abstract

There are several methods for building prediction models. The wealth of currently available modeling techniques usually forces the researcher to judge, a priori, what will likely be the best method. Super learning (SL) is a methodology that facilitates this decision by combining all identified prediction algorithms pertinent for a particular prediction problem. SL generates a final model that is at least as good as any of the other models considered for predicting the outcome. The overarching aim of this work is to introduce SL to analysts and practitioners. This work compares the performance of logistic regression, penalized regression, random forests, deep learning neural networks, and SL to predict successful substance use disorders (SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used. All algorithms were evaluated using the area under the receiver operating characteristic curve (AUC) in a test sample that was not included in the training sample used to fit the prediction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all but one of the algorithms compared. An explanation of SL steps is provided. SL is the first step in targeted learning, an analytic framework that yields double robust effect estimation and inference with fewer assumptions than the usual parametric methods. Different aspects of SL depending on the context, its function within the targeted learning framework, and the benefits of this methodology in the addiction field are discussed.

Suggested Citation

  • Laura Acion & Diana Kelmansky & Mark van der Laan & Ethan Sahker & DeShauna Jones & Stephan Arndt, 2017. "Use of a machine learning framework to predict substance use disorder treatment success," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0175383
    DOI: 10.1371/journal.pone.0175383
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175383
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0175383&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0175383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evans, Elizabeth & Li, Libo & Hser, Yih-Ing, 2009. "Client and program factors associated with dropout from court mandated drug treatment," Evaluation and Program Planning, Elsevier, vol. 32(3), pages 204-212, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franck Jaotombo & Vanessa Pauly & Guillaume Fond & Veronica Orleans & Pascal Auquier & Badih Ghattas & Laurent Boyer, 2023. "Machine-learning prediction for hospital length of stay using a French medico-administrative database," Post-Print hal-04325691, HAL.
    2. Vinícius Serafini Roglio & Eduardo Nunes Borges & Francisco Diego Rabelo-da-Ponte & Felipe Ornell & Juliana Nichterwitz Scherer & Jaqueline Bohrer Schuch & Ives Cavalcante Passos & Breno Sanvicente-Vi, 2020. "Prediction of attempted suicide in men and women with crack-cocaine use disorder in Brazil," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-19, May.
    3. Alexander Engels & Katrin C Reber & Ivonne Lindlbauer & Kilian Rapp & Gisela Büchele & Jochen Klenk & Andreas Meid & Clemens Becker & Hans-Helmut König, 2020. "Osteoporotic hip fracture prediction from risk factors available in administrative claims data – A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
    4. Sheelu Sagar & Rohit Rastogi & Vikas Garg & Ishwar V. Basavaraddi, 2022. "Impact of Meditation on Quality of Life of Employees," International Journal of Reliable and Quality E-Healthcare (IJRQEH), IGI Global, vol. 11(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alyssa M. Sheeran & Amanda J. Heideman, 2021. "The Effects of Race and Ethnicity on Admission, Graduation, and Recidivism in the Milwaukee County Adult Drug Treatment Court," Social Sciences, MDPI, vol. 10(7), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0175383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.