IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3906-d949082.html
   My bibliography  Save this article

State Prediction Method for A-Class Insulation Board Production Line Based on Transfer Learning

Author

Listed:
  • Yong Wang

    (School of Electrical Engineering, China University of Mining and Technology, Xuzhou 221000, China
    School of Information and Engineering, Xuzhou College of Industrial Technology, Xuzhou 221000, China
    IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou 221000, China)

  • Hui Wang

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Xiaoqiang Guo

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Xinhua Liu

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Xiaowen Liu

    (School of Electrical Engineering, China University of Mining and Technology, Xuzhou 221000, China
    School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221000, China)

Abstract

It is essential to determine the running state of a production line to monitor the production status and make maintenance plans. In order to monitor the real-time running state of an A-class insulation board production line conveniently and accurately, a novel state prediction method based on deep learning and long short-term memory (LSTM) network is proposed. The multiple layers of the Res-block are introduced to fuse local features and improve hidden feature extraction. The transfer learning strategy is studied and the improved loss function is proposed, which makes the model training process fast and stable. The experimental results show that the proposed Res-LSTM model reached 98.9% prediction accuracy, and the average R 2 -score of the industrial experiments can reach 0.93. Compared with other mainstream algorithms, the proposed Res-LSTM model obtained excellent performance in prediction speed and accuracy, which meets the needs of industrial production.

Suggested Citation

  • Yong Wang & Hui Wang & Xiaoqiang Guo & Xinhua Liu & Xiaowen Liu, 2022. "State Prediction Method for A-Class Insulation Board Production Line Based on Transfer Learning," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3906-:d:949082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
    2. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    4. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    6. Ali Unlu & Abdulhamit Subasi, 2025. "Substance use prediction using artificial intelligence techniques," Journal of Computational Social Science, Springer, vol. 8(1), pages 1-40, February.
    7. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Jin Cui & Licai Cao & Tianxiao Zhang, 2024. "A two-stage Gaussian process regression model for remaining useful prediction of bearings," Journal of Risk and Reliability, , vol. 238(2), pages 333-348, April.
    11. Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    13. Shi, Yan & Behrensdorf, Jasper & Zhou, Jiayan & Hu, Yue & Broggi, Matteo & Beer, Michael, 2024. "Network reliability analysis through survival signature and machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Zhu, Ting & Chen, Zhen & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2024. "Adaptive staged remaining useful life prediction of roller in a hot strip mill based on multi-scale LSTM with multi-head attention," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    15. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Wang, Bin & Wang, Jun, 2021. "Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and RIF-based algorithm," Energy, Elsevier, vol. 216(C).
    17. Fei Chen & Zhiyang Wang & Yu He, 2023. "A Deep Neural Network-Based Optimal Scheduling Decision-Making Method for Microgrids," Energies, MDPI, vol. 16(22), pages 1-17, November.
    18. Wenchao Ban & Liangduo Shen, 2022. "PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    19. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3906-:d:949082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.