IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v5y2022i1d10.1007_s42001-021-00157-1.html
   My bibliography  Save this article

Exploring the political pulse of a country using data science tools

Author

Listed:
  • Miguel G. Folgado

    (Universidad de Valencia-CSIC)

  • Veronica Sanz

    (Universidad de Valencia-CSIC
    University of Sussex)

Abstract

In this paper we illustrate the use of Data Science techniques to analyse complex human communication. In particular, we consider tweets from leaders of political parties as a dynamical proxy to political programmes and ideas. We also study the temporal evolution of their contents as a reaction to specific events. We analyse levels of positive and negative sentiment in the tweets using new tools adapted to social media. We also train a Fully-Connected Neural Network (FCNN) to recognise the political affiliation of a tweet. The FCNN is able to predict the origin of the tweet with a precision in the range of 71–75%, and the political leaning (left or right) with a precision of around 90%. This study is meant to be viewed as an example of how to use Twitter data and different types of Data Science tools for a political analysis.

Suggested Citation

  • Miguel G. Folgado & Veronica Sanz, 2022. "Exploring the political pulse of a country using data science tools," Journal of Computational Social Science, Springer, vol. 5(1), pages 987-1000, May.
  • Handle: RePEc:spr:jcsosc:v:5:y:2022:i:1:d:10.1007_s42001-021-00157-1
    DOI: 10.1007/s42001-021-00157-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-021-00157-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-021-00157-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jake M. Hofman & Duncan J. Watts & Susan Athey & Filiz Garip & Thomas L. Griffiths & Jon Kleinberg & Helen Margetts & Sendhil Mullainathan & Matthew J. Salganik & Simine Vazire & Alessandro Vespignani, 2021. "Integrating explanation and prediction in computational social science," Nature, Nature, vol. 595(7866), pages 181-188, July.
    2. Ricardo Francisco Reier Forradellas & Sergio Luis Náñez Alonso & Javier Jorge-Vazquez & Marcela Laura Rodriguez, 2020. "Applied Machine Learning in Social Sciences: Neural Networks and Crime Prediction," Social Sciences, MDPI, vol. 10(1), pages 1-20, December.
    3. Giovanni Di Franco & Michele Santurro, 2021. "Machine learning, artificial neural networks and social research," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(3), pages 1007-1025, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    2. Mohamed-Amine Babay & Mustapha Adar & Ahmed Chebak & Mustapha Mabrouki, 2023. "Dynamics of Gas Generation in Porous Electrode Alkaline Electrolysis Cells: An Investigation and Optimization Using Machine Learning," Energies, MDPI, vol. 16(14), pages 1-21, July.
    3. Ari Hyytinen & Petri Rouvinen & Mika Pajarinen & Joosua Virtanen, 2023. "Ex Ante Predictability of Rapid Growth: A Design Science Approach," Entrepreneurship Theory and Practice, , vol. 47(6), pages 2465-2493, November.
    4. Malgorzata J. Krawczyk & Mateusz Libirt & Krzysztof Malarz, 2024. "Analysis of scientific cooperation at the international and intercontinental level," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4983-5002, August.
    5. Elizabeth Dolan & James Goulding & Harry Marshall & Gavin Smith & Gavin Long & Laila J. Tata, 2023. "Assessing the value of integrating national longitudinal shopping data into respiratory disease forecasting models," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Wadim Strielkowski & Svetlana Zenchenko & Anna Tarasova & Yana Radyukova, 2022. "Management of Smart and Sustainable Cities in the Post-COVID-19 Era: Lessons and Implications," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    7. Simon Willcock & Javier Martinez-Lopez & Norman Dandy & James M. Bullock, 2021. "High Spatial-Temporal Resolution Data across Large Scales Are Needed to Transform Our Understanding of Ecosystem Services," Land, MDPI, vol. 10(7), pages 1-6, July.
    8. Benjamin W. Domingue & Klint Kanopka & Radhika Kapoor & Steffi Pohl & R. Philip Chalmers & Charles Rahal & Mijke Rhemtulla, 2024. "The InterModel Vigorish as a Lens for Understanding (and Quantifying) the Value of Item Response Models for Dichotomously Coded Items," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 1034-1054, September.
    9. Cerqua, Augusto & Letta, Marco, 2022. "Local inequalities of the COVID-19 crisis," Regional Science and Urban Economics, Elsevier, vol. 92(C).
    10. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    11. Grossmann, Igor & Rotella, Amanda A. & Hutcherson, Cendri & Sharpinskyi, Konstantyn & Varnum, Michael E. W. & Achter, Sebastian K. & Dhami, Mandeep & Guo, Xinqi Evie & Kara-Yakoubian, Mane R. & Mandel, 2023. "Insights into the accuracy of social scientists' forecasts of societal change," Other publications TiSEM c14f4a4a-b105-46b3-90f7-f, Tilburg University, School of Economics and Management.
    12. Giovanni Franco, 2024. "The return of non-probability sample: the electoral polls at the time of internet and social media," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3811-3830, August.
    13. Renáta Németh, 2023. "A scoping review on the use of natural language processing in research on political polarization: trends and research prospects," Journal of Computational Social Science, Springer, vol. 6(1), pages 289-313, April.
    14. Rory Gibb & Felipe J. Colón-González & Phan Trong Lan & Phan Thi Huong & Vu Sinh Nam & Vu Trong Duoc & Do Thai Hung & Nguyễn Thanh Dong & Vien Chinh Chien & Ly Thi Thuy Trang & Do Kien Quoc & Tran Min, 2023. "Interactions between climate change, urban infrastructure and mobility are driving dengue emergence in Vietnam," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Yan, Jason & Hall, Seventy F. & Sage, Melanie & Du, Yuhao & Joseph, Kenneth, 2024. "A computational social science approach to understanding predictors of Chafee service receipt," Children and Youth Services Review, Elsevier, vol. 158(C).
    16. Nelson P. Rayl & Nitish R. Sinha, 2022. "Integrating Prediction and Attribution to Classify News," Finance and Economics Discussion Series 2022-042, Board of Governors of the Federal Reserve System (U.S.).
    17. Sergio Luis Nañez Alonso & Ricardo Francisco Reier Forradellas & Oriol Pi Morell & Javier Jorge-Vazquez, 2021. "Digitalization, Circular Economy and Environmental Sustainability: The Application of Artificial Intelligence in the Efficient Self-Management of Waste," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    18. Isabelle Bonhoure & Anna Cigarini & Julián Vicens & Bàrbara Mitats & Josep Perelló, 2023. "Reformulating computational social science with citizen social science: the case of a community-based mental health care research," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    19. Filippo Simini & Gianni Barlacchi & Massimilano Luca & Luca Pappalardo, 2021. "A Deep Gravity model for mobility flows generation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    20. Ahmed Abbasi & Jeffrey Parsons & Gautam Pant & Olivia R. Liu Sheng & Suprateek Sarker, 2024. "Pathways for Design Research on Artificial Intelligence," Information Systems Research, INFORMS, vol. 35(2), pages 441-459, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:5:y:2022:i:1:d:10.1007_s42001-021-00157-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.