IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v3y2020i1d10.1007_s42001-019-00055-7.html
   My bibliography  Save this article

The fully visible Boltzmann machine and the Senate of the 45th Australian Parliament in 2016

Author

Listed:
  • Jessica J. Bagnall

    (La Trobe University)

  • Andrew T. Jones

    (University of Queensland)

  • Natalie Karavarsamis

    (La Trobe University)

  • Hien D. Nguyen

    (La Trobe University)

Abstract

After the 2016 double dissolution election, the 45th Australian Parliament was formed. At the time of its swearing in, the Senate of the 45th Australian Parliament consisted of nine political parties, the largest number in the history of the Australian Parliament. Due to the breadth of the political spectrum that the Senate represented, the situation presented an interesting opportunity for the study of political interactions in the Australian context. Using publicly available Senate voting data in 2016, we quantitatively analyzed two aspects of the Senate. First, we analyzed the degree to which each of the non-government parties of the Senate is pro- or anti-government. Second, we analyzed the degree to which the votes of each of the non-government Senate parties are in concordance or discordance with one another. We utilized the fully visible Boltzmann machine (FVBM) model to conduct these analyses. The FVBM is an artificial neural network that can be viewed as a multivariate generalization of the Bernoulli distribution. Via a maximum pseudolikelihood estimation approach, we conducted parameter estimation and constructed hypothesis tests that revealed the interaction structures within the Australian Senate. The conclusions that we drew are well supported by external sources of information.

Suggested Citation

  • Jessica J. Bagnall & Andrew T. Jones & Natalie Karavarsamis & Hien D. Nguyen, 2020. "The fully visible Boltzmann machine and the Senate of the 45th Australian Parliament in 2016," Journal of Computational Social Science, Springer, vol. 3(1), pages 55-81, April.
  • Handle: RePEc:spr:jcsosc:v:3:y:2020:i:1:d:10.1007_s42001-019-00055-7
    DOI: 10.1007/s42001-019-00055-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-019-00055-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-019-00055-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    2. Danielle Wood & John Daley & Carmela Chivers, 2018. "Australia Demonstrates the Rise of Populism is About More than Economics," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 51(3), pages 399-410, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    2. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    3. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    4. Timothy Tyler Brown & Juan Pablo Atal, 2019. "How robust are reference pricing studies on outpatient medical procedures? Three different preprocessing techniques applied to difference‐in differences," Health Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 280-298, February.
    5. L. Sun & M. K. Clayton, 2008. "Bayesian Analysis of Crossclassified Spatial Data with Autocorrelation," Biometrics, The International Biometric Society, vol. 64(1), pages 74-84, March.
    6. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    7. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    8. Francesco Bartolucci & Claudia Pigini, 2017. "Granger causality in dynamic binary short panel data models," Working Papers 421, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    9. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Keon Lee, Seong, 2005. "On generalized multivariate decision tree by using GEE," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1105-1119, June.
    11. Harald Hruschka, 2022. "Analyzing joint brand purchases by conditional restricted Boltzmann machines," Review of Managerial Science, Springer, vol. 16(4), pages 1117-1145, May.
    12. Ivy Jansen & Geert Molenberghs, 2008. "A flexible marginal modelling strategy for non‐monotone missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 347-373, April.
    13. Miranda, Alfonso & Trivedi, Pravin K., 2020. "Econometric Models of Fertility," IZA Discussion Papers 13357, Institute of Labor Economics (IZA).
    14. Lesaffre, Emmanuel & Molenberghs, Geert & Scheys, Ilse, 1997. "Prediction and classification when the diagnostic classes are related," Computational Statistics & Data Analysis, Elsevier, vol. 25(1), pages 67-90, July.
    15. Dittrich, Regina & Francis, Brian & Hatzinger, Reinhold & Katzenbeisser, Walter, 2006. "Modelling dependency in multivariate paired comparisons: A log-linear approach," Mathematical Social Sciences, Elsevier, vol. 52(2), pages 197-209, September.
    16. Molenberghs, Geert & Kenward, Michael G., 2010. "Semi-parametric marginal models for hierarchical data and their corresponding full models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 585-597, February.
    17. Zhang, Heping, 2004. "Recursive Partitioning and Tree-based Methods," Papers 2004,30, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    18. Beunckens, Caroline & Sotto, Cristina & Molenberghs, Geert, 2008. "A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1533-1548, January.
    19. Lovison, Gianfranco, 2006. "A matrix-valued Bernoulli distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1573-1585, August.
    20. Hailemichael M. Worku & Mark De Rooij, 2017. "Properties of Ideal Point Classification Models for Bivariate Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 308-328, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:3:y:2020:i:1:d:10.1007_s42001-019-00055-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.