IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v48y2024i1d10.1007_s10878-024-01196-w.html
   My bibliography  Save this article

Customer churn prediction using a novel meta-classifier: an investigation on transaction, Telecommunication and customer churn datasets

Author

Listed:
  • Fatemeh Ehsani

    (K. N. Toosi University of Technology)

  • Monireh Hosseini

    (K. N. Toosi University of Technology)

Abstract

With the advancement of electronic service platforms, customers exhibit various purchasing behaviors. Given the extensive array of options and minimal exit barriers, customer migration from one digital service to another has become a common challenge for businesses. Customer churn prediction (CCP) emerges as a crucial marketing strategy aimed at estimating the likelihood of customer abandonment. In this paper, we aim to predict customer churn intentions using a novel robust meta-classifier. We utilized three distinct datasets: transaction, telecommunication, and customer churn datasets. Employing Decision Tree, Random Forest, XGBoost, AdaBoost, and Extra Trees as the five base supervised classifiers on these three datasets, we conducted cross-validation and evaluation setups separately. Additionally, we employed permutation and SelectKBest feature selection to rank the most practical features for achieving the highest accuracy. Furthermore, we utilized BayesSearchCV and GridSearchCV to discover, optimize, and tune the hyperparameters. Subsequently, we applied the refined classifiers in a funnel of a new meta-classifier for each dataset individually. The experimental results indicate that our proposed meta-classifier demonstrates superior accuracy compared to conventional classifiers and even stacking ensemble methods. The predictive outcomes serve as a valuable tool for businesses in identifying potential churners and taking proactive measures to retain customers, thereby enhancing customer retention rates and ensuring business sustainability.

Suggested Citation

  • Fatemeh Ehsani & Monireh Hosseini, 2024. "Customer churn prediction using a novel meta-classifier: an investigation on transaction, Telecommunication and customer churn datasets," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-31, August.
  • Handle: RePEc:spr:jcomop:v:48:y:2024:i:1:d:10.1007_s10878-024-01196-w
    DOI: 10.1007/s10878-024-01196-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01196-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01196-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong Pan & Hanxun Zhou, 2020. "Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce," Electronic Commerce Research, Springer, vol. 20(2), pages 297-320, June.
    2. Varadarajan, Rajan & Welden, Roman B. & Arunachalam, S. & Haenlein, Michael & Gupta, Shaphali, 2022. "Digital product innovations for the greater good and digital marketing innovations in communications and channels: Evolution, emerging issues, and future research directions," International Journal of Research in Marketing, Elsevier, vol. 39(2), pages 482-501.
    3. Patrick Bachmann & Markus Meierer & Jeffrey Näf, 2021. "The Role of Time-Varying Contextual Factors in Latent Attrition Models for Customer Base Analysis," Marketing Science, INFORMS, vol. 40(4), pages 783-809, July.
    4. David J. Hand, 2018. "Statistical challenges of administrative and transaction data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 555-605, June.
    5. Esther Calderón-Monge & José M. Ramírez-Hurtado, 2022. "Measuring the consumer engagement related to social media: the case of franchising," Electronic Commerce Research, Springer, vol. 22(4), pages 1249-1274, December.
    6. Maia Seturi, 2024. "Exploring the importance of building strong customer relationships," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 1(4(75)), pages 33-37, February.
    7. Susan Mallett & Steve Halligan & Gary S Collins & Doug G Altman, 2014. "Exploration of Analysis Methods for Diagnostic Imaging Tests: Problems with ROC AUC and Confidence Scores in CT Colonography," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    8. Marcia Mkansi, 2022. "E-business adoption costs and strategies for retail micro businesses," Electronic Commerce Research, Springer, vol. 22(4), pages 1153-1193, December.
    9. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saravanan Thirumuruganathan & Soon-gyo Jung & Dianne Ramirez Robillos & Joni Salminen & Bernard J. Jansen, 2021. "Forecasting the nearly unforecastable: why aren’t airline bookings adhering to the prediction algorithm?," Electronic Commerce Research, Springer, vol. 21(1), pages 73-100, March.
    2. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    3. Alexei A. Gaivoronski & Per Jonny Nesse & Olai Bendik Erdal, 2017. "Internet service provision and content services: paid peering and competition between internet providers," Netnomics, Springer, vol. 18(1), pages 43-79, May.
    4. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    5. Peter G. M. van der Heijden & Maarten Cruyff & Paul A. Smith & Christine Bycroft & Patrick Graham & Nathaniel Matheson‐Dunning, 2022. "Multiple system estimation using covariates having missing values and measurement error: Estimating the size of the Māori population in New Zealand," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 156-177, January.
    6. Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
    7. Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
    8. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    9. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    10. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    11. Jonas F. Schenkel & Li‐Chun Zhang, 2022. "Adjusting misclassification using a second classifier with an external validation sample," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1882-1902, October.
    12. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    13. Effrosyni Bitakou & Sotirios Karetsos & Filotheos Ntalianis & Maria Ntaliani & Constantina Costopoulou, 2023. "Evaluating Social Media Marketing in the Greek Winery Industry," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    14. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    15. Gaivoronski, Alexei A. & Nesse, Per-Jonny & Østerbo, Olav-Norvald & Lønsethagen, Håkon, 2016. "Risk-balanced dimensioning and pricing of End-to-End differentiated services," European Journal of Operational Research, Elsevier, vol. 254(2), pages 644-655.
    16. Ologunebi, John & Taiwo, Ebenezer, 2024. "Personalized ad Content and Individual User Preference: A boost for Conversion Rates in the UK E-commerce Business," MPRA Paper 120595, University Library of Munich, Germany.
    17. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    18. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    19. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    20. Wu, Chih-Wen & Botella-Carrubi, Dolores & Blanco-González-Tejero, Cristina, 2024. "The empirical study of digital marketing strategy and performance in small and medium-sized enterprises (SMEs)," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:48:y:2024:i:1:d:10.1007_s10878-024-01196-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.