IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v34y2017i2d10.1007_s10878-016-0083-z.html
   My bibliography  Save this article

Online scheduling to minimize the total weighted completion time plus the rejection cost

Author

Listed:
  • Ran Ma

    (Henan Polytechnic University
    Zhengzhou University)

  • Jinjiang Yuan

    (Zhengzhou University)

Abstract

We consider the online scheduling on a single machine, in which jobs are released over time and each job can be either accepted and scheduled on the machine or rejected under a certain rejection cost. The goal is to minimize the total weighted completion time of the accepted jobs plus the total rejection cost of the rejected jobs. For this problem, we provide an online algorithm with a best possible competitive ratio of 2.

Suggested Citation

  • Ran Ma & Jinjiang Yuan, 2017. "Online scheduling to minimize the total weighted completion time plus the rejection cost," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 483-503, August.
  • Handle: RePEc:spr:jcomop:v:34:y:2017:i:2:d:10.1007_s10878-016-0083-z
    DOI: 10.1007/s10878-016-0083-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-016-0083-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-016-0083-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward J. Anderson & Chris N. Potts, 2004. "Online Scheduling of a Single Machine to Minimize Total Weighted Completion Time," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 686-697, August.
    2. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    3. Ma, Ran & Tao, Jiping & Yuan, Jinjiang, 2016. "Online scheduling with linear deteriorating jobs to minimize the total weighted completion time," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 570-583.
    4. Leslie A. Hall & Andreas S. Schulz & David B. Shmoys & Joel Wein, 1997. "Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 513-544, August.
    5. Lu, Lingfa & Ng, C.T. & Zhang, Liqi, 2011. "Optimal algorithms for single-machine scheduling with rejection to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 130(2), pages 153-158, April.
    6. Ma, Ran & Yuan, Jinjiang, 2014. "Online tradeoff scheduling on a single machine to minimize makespan and total weighted completion time," International Journal of Production Economics, Elsevier, vol. 158(C), pages 114-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Li & Hailing Liu & Shisheng Li, 2018. "Online Parallel-Machine Scheduling in KRT Environment to Minimize Total Weighted Completion Time," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-12, August.
    2. Jiawei Zhang & Ling Wang & Lining Xing, 2019. "Large-scale medical examination scheduling technology based on intelligent optimization," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 385-404, January.
    3. Baruch Mor & Gur Mosheiov & Dana Shapira, 2021. "Single machine lot scheduling with optional job-rejection," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 1-11, January.
    4. Ma, Ran & Guo, Sainan & Miao, Cuixia, 2021. "A semi-online algorithm and its competitive analysis for parallel-machine scheduling problem with rejection," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    5. Ma, Ran & Guo, Sainan, 2021. "Applying “Peeling Onion” approach for competitive analysis in online scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 290(1), pages 57-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Ran & Guo, Sainan, 2021. "Applying “Peeling Onion” approach for competitive analysis in online scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 290(1), pages 57-67.
    2. Ma, Ran & Tao, Jiping & Yuan, Jinjiang, 2016. "Online scheduling with linear deteriorating jobs to minimize the total weighted completion time," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 570-583.
    3. Xiaoyan Zhang & Ran Ma & Jian Sun & Zan-Bo Zhang, 2022. "Randomized selection algorithm for online stochastic unrelated machines scheduling," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1796-1811, October.
    4. Xiaoyan Zhang & Ran Ma & Jian Sun & Zan-Bo Zhang, 0. "Randomized selection algorithm for online stochastic unrelated machines scheduling," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-16.
    5. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    6. Dengpan Liu & Sumit Sarkar & Chelliah Sriskandarajah, 2010. "Resource Allocation Policies for Personalization in Content Delivery Sites," Information Systems Research, INFORMS, vol. 21(2), pages 227-248, June.
    7. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    8. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    9. Zhi Pei & Mingzhong Wan & Ziteng Wang, 2020. "A new approximation algorithm for unrelated parallel machine scheduling with release dates," Annals of Operations Research, Springer, vol. 285(1), pages 397-425, February.
    10. Sitters, R.A., 2009. "Efficient algorithms for average completion time scheduling," Serie Research Memoranda 0058, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    11. Cole, Richard & Correa, Jose & Gkatzelis, Vasillis & Mirrokni, Vahab & Olver, Neil, 2015. "Decentralized utilitarian mechanisms for scheduling games," LSE Research Online Documents on Economics 103081, London School of Economics and Political Science, LSE Library.
    12. Robbert Fokkink & Thomas Lidbetter & László A. Végh, 2019. "On Submodular Search and Machine Scheduling," Management Science, INFORMS, vol. 44(4), pages 1431-1449, November.
    13. Wenjie Li & Hailing Liu & Shisheng Li, 2018. "Online Parallel-Machine Scheduling in KRT Environment to Minimize Total Weighted Completion Time," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-12, August.
    14. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    15. Hui Liu & Maurice Queyranne & David Simchi‐Levi, 2005. "On the asymptotic optimality of algorithms for the flow shop problem with release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 232-242, April.
    16. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
    17. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    18. Miri Gilenson & Hussein Naseraldin & Liron Yedidsion, 2019. "An approximation scheme for the bi-scenario sum of completion times trade-off problem," Journal of Scheduling, Springer, vol. 22(3), pages 289-304, June.
    19. Xing Chai & Wenhua Li & Yuejuan Zhu, 2021. "Online scheduling to minimize maximum weighted flow-time on a bounded parallel-batch machine," Annals of Operations Research, Springer, vol. 298(1), pages 79-93, March.
    20. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:34:y:2017:i:2:d:10.1007_s10878-016-0083-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.