IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v22y2019i3d10.1007_s10951-018-0588-7.html
   My bibliography  Save this article

An approximation scheme for the bi-scenario sum of completion times trade-off problem

Author

Listed:
  • Miri Gilenson

    (Ben Gurion University)

  • Hussein Naseraldin

    (ORT Braude College of Engineering)

  • Liron Yedidsion

    (Technion)

Abstract

An influential aspect of any scheduling problem is the processing time of the tasks (jobs), which can be deterministic, stochastic, or even uncertain. Scheduling according to unique and known processing times (a.k.a. nominal values) may be naïve, since many production systems are subject to inherent uncertainty. We offer a novel approach for scheduling under uncertainty, inspired by scenario-based optimization. This new approach copes with uncertainty by simultaneously optimizing a given scheduling criterion under two different scenarios of processing times. We term the new problem the bi-scenario trade-off problem. We study the sum of completion times criterion for which we develop a 2-approximation algorithm and show that it is asymptotically tight. We use this approximation to develop the polynomial time approximation scheme that approximates the Pareto-optimal set of solutions and introduce data-dependent analysis to examine the sensitivity of the model parameters.

Suggested Citation

  • Miri Gilenson & Hussein Naseraldin & Liron Yedidsion, 2019. "An approximation scheme for the bi-scenario sum of completion times trade-off problem," Journal of Scheduling, Springer, vol. 22(3), pages 289-304, June.
  • Handle: RePEc:spr:jsched:v:22:y:2019:i:3:d:10.1007_s10951-018-0588-7
    DOI: 10.1007/s10951-018-0588-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-018-0588-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-018-0588-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Yang & Gang Yu, 2002. "On the Robust Single Machine Scheduling Problem," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 17-33, March.
    2. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    3. Leslie A. Hall & Andreas S. Schulz & David B. Shmoys & Joel Wein, 1997. "Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 513-544, August.
    4. Michael Masin & Yossi Bukchin, 2008. "Diversity Maximization Approach for Multiobjective Optimization," Operations Research, INFORMS, vol. 56(2), pages 411-424, April.
    5. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    6. Uttarayan Bagchi, 1989. "Simultaneous Minimization of Mean and Variation of Flow Time and Waiting Time in Single Machine Systems," Operations Research, INFORMS, vol. 37(1), pages 118-125, February.
    7. Shashi Mittal & Andreas S. Schulz, 2013. "A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined into One," Operations Research, INFORMS, vol. 61(2), pages 386-397, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
    2. Büsing, Christina & Goetzmann, Kai-Simon & Matuschke, Jannik & Stiller, Sebastian, 2017. "Reference points and approximation algorithms in multicriteria discrete optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 829-840.
    3. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    4. Zhi Pei & Mingzhong Wan & Ziteng Wang, 2020. "A new approximation algorithm for unrelated parallel machine scheduling with release dates," Annals of Operations Research, Springer, vol. 285(1), pages 397-425, February.
    5. Qiulan Zhao & Jinjiang Yuan, 2020. "Bicriteria scheduling of equal length jobs on uniform parallel machines," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 637-661, April.
    6. Cole, Richard & Correa, Jose & Gkatzelis, Vasillis & Mirrokni, Vahab & Olver, Neil, 2015. "Decentralized utilitarian mechanisms for scheduling games," LSE Research Online Documents on Economics 103081, London School of Economics and Political Science, LSE Library.
    7. Xiaoyan Zhang & Ran Ma & Jian Sun & Zan-Bo Zhang, 2022. "Randomized selection algorithm for online stochastic unrelated machines scheduling," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1796-1811, October.
    8. Yuri N. Sotskov & Natalja G. Egorova, 2019. "The Optimality Region for a Single-Machine Scheduling Problem with Bounded Durations of the Jobs and the Total Completion Time Objective," Mathematics, MDPI, vol. 7(5), pages 1-21, April.
    9. Pei, Zhi & Lu, Haimin & Jin, Qingwei & Zhang, Lianmin, 2022. "Target-based distributionally robust optimization for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 420-431.
    10. Robbert Fokkink & Thomas Lidbetter & László A. Végh, 2019. "On Submodular Search and Machine Scheduling," Management Science, INFORMS, vol. 44(4), pages 1431-1449, November.
    11. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    12. Danny Hermelin & Dvir Shabtay & Chen Zelig & Michael Pinedo, 2022. "A general scheme for solving a large set of scheduling problems with rejection in FPT time," Journal of Scheduling, Springer, vol. 25(2), pages 229-255, April.
    13. Hui Liu & Maurice Queyranne & David Simchi‐Levi, 2005. "On the asymptotic optimality of algorithms for the flow shop problem with release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 232-242, April.
    14. Xiaoyan Zhang & Ran Ma & Jian Sun & Zan-Bo Zhang, 0. "Randomized selection algorithm for online stochastic unrelated machines scheduling," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-16.
    15. Ran Ma & Jinjiang Yuan, 2017. "Online scheduling to minimize the total weighted completion time plus the rejection cost," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 483-503, August.
    16. Altekin, F. Tevhide & Bukchin, Yossi, 2022. "A multi-objective optimization approach for exploring the cost and makespan trade-off in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 235-253.
    17. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.
    18. José R. Correa & Maurice Queyranne, 2012. "Efficiency of equilibria in restricted uniform machine scheduling with total weighted completion time as social cost," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 384-395, August.
    19. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    20. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:22:y:2019:i:3:d:10.1007_s10951-018-0588-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.