IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v30y2015i3d10.1007_s10878-013-9665-1.html
   My bibliography  Save this article

A near-optimal adaptive algorithm for maximizing modularity in dynamic scale-free networks

Author

Listed:
  • Thang N. Dinh

    (University of Florida)

  • Nam P. Nguyen

    (University of Florida
    Towson University)

  • Md Abdul Alim

    (University of Florida)

  • My T. Thai

    (University of Florida)

Abstract

We introduce A $$^3$$ 3 CS, an adaptive framework with approximation guarantees for quickly identifying community structure in dynamic networks via maximizing Modularity Q. Our framework explores the advantages of the power-law distribution property found in many real-world complex systems. The framework is scalable for very large networks, and more excitingly, possesses approximation factors to ensure the quality of its detected community structure. To the best of our knowledge, this is the first framework that achieves approximation guarantees for the NP-hard Modularity maximization problem, especially on dynamic scale-free networks. To certify our approach, we conduct extensive experiments in comparison with other adaptive methods on both synthesized networks with known community structures and real-world traces including ArXiv e-print citation and Facebook social networks. Excellent empirical results not only confirm our theoretical results but also promise the practical applicability of A $$^3$$ 3 CS in a wide range of dynamic networks.

Suggested Citation

  • Thang N. Dinh & Nam P. Nguyen & Md Abdul Alim & My T. Thai, 2015. "A near-optimal adaptive algorithm for maximizing modularity in dynamic scale-free networks," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 747-767, October.
  • Handle: RePEc:spr:jcomop:v:30:y:2015:i:3:d:10.1007_s10878-013-9665-1
    DOI: 10.1007/s10878-013-9665-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-013-9665-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-013-9665-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 2000. "Scale-free characteristics of random networks: the topology of the world-wide web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 69-77.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    4. G. Agarwal & D. Kempe, 2008. "Modularity-maximizing graph communities via mathematical programming," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(3), pages 409-418, December.
    5. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    2. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    3. Biao Xiong & Bixin Li & Rong Fan & Qingzhong Zhou & Wu Li, 2017. "Modeling and Simulation for Effectiveness Evaluation of Dynamic Discrete Military Supply Chain Networks," Complexity, Hindawi, vol. 2017, pages 1-9, October.
    4. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    5. Erjia Yan & Ying Ding & Qinghua Zhu, 2010. "Mapping library and information science in China: a coauthorship network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 115-131, April.
    6. Nicholas S. Vonortas & Koichiro Okamura, 2013. "Network structure and robustness: lessons for research programme design," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(4), pages 392-411, June.
    7. Morehead, Raymond & Noore, Afzel, 2007. "Novel hybrid mitigation strategy for improving the resiliency of hierarchical networks subjected to attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 603-612.
    8. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    9. Sameer Kumar & Bernd Markscheffel, 2016. "Bonded-communities in HantaVirus research: a research collaboration network (RCN) analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 533-550, October.
    10. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    11. Cerqueti, Roy & Ferraro, Giovanna & Iovanella, Antonio, 2019. "Measuring network resilience through connection patterns," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 320-329.
    12. Chen, Mu & Yu, Boming & Xu, Peng & Chen, Jun, 2007. "A new deterministic complex network model with hierarchical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 707-717.
    13. Garza-González, E. & Posadas-Castillo, C. & López-Mancilla, D. & Soriano-Sánchez, A.G., 2020. "Increasing synchronizability in a scale-free network via edge elimination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 233-243.
    14. Orcun Temizkan & Sungjune Park & Cem Saydam, 2017. "Software Diversity for Improved Network Security: Optimal Distribution of Software-Based Shared Vulnerabilities," Information Systems Research, INFORMS, vol. 28(4), pages 828-849, December.
    15. Dangalchev, Chavdar, 2004. "Generation models for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 659-671.
    16. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    17. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    18. Iovanella, Antonio, 2024. "Exploiting network science in business process management: A conceptual framework," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    19. Tomassini, Marco & Luthi, Leslie, 2007. "Empirical analysis of the evolution of a scientific collaboration network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 750-764.
    20. Kibae Kim & Jörn Altmann, 2015. "Effect of Homophily on Network Formation," TEMEP Discussion Papers 2015121, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:30:y:2015:i:3:d:10.1007_s10878-013-9665-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.