Modularity-maximizing graph communities via mathematical programming
Author
Abstract
Suggested Citation
DOI: 10.1140/epjb/e2008-00425-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
- Santiago, Rafael & Lamb, Luís C., 2017. "Efficient modularity density heuristics for large graphs," European Journal of Operational Research, Elsevier, vol. 258(3), pages 844-865.
- Xiang, Ju & Tang, Yan-Ni & Gao, Yuan-Yuan & Zhang, Yan & Deng, Ke & Xu, Xiao-Ke & Hu, Ke, 2015. "Multi-resolution community detection based on generalized self-loop rescaling strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 127-139.
- Xiang-Sun Zhang & Zhenping Li & Rui-Sheng Wang & Yong Wang, 2012. "A combinatorial model and algorithm for globally searching community structure in complex networks," Journal of Combinatorial Optimization, Springer, vol. 23(4), pages 425-442, May.
- Jinshan Qi & Liang Xun & Xiaoping Zhou & Zhiyu Li & Yu Liu & Hengchao Cheng, 2018. "Micro-blog user community discovery using generalized SimRank edge weighting method," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-21, May.
- Vincent Labatut & Jean-Michel Balasque, 2012. "Detection and Interpretation of Communities in Complex Networks: Methods and Practical Application," Post-Print hal-00633653, HAL.
- Thang N. Dinh & Nam P. Nguyen & Md Abdul Alim & My T. Thai, 2015. "A near-optimal adaptive algorithm for maximizing modularity in dynamic scale-free networks," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 747-767, October.
- Yazdanparast, Sakineh & Havens, Timothy C., 2017. "Modularity maximization using completely positive programming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 20-32.
- Dong Wang & Jiexun Li & Kaiquan Xu & Yizhen Wu, 2017. "Sentiment community detection: exploring sentiments and relationships in social networks," Electronic Commerce Research, Springer, vol. 17(1), pages 103-132, March.
- Chen-Kun Tsung & Sing-Ling Lee & Hann-Jang Ho & ShengKai Chou, 2021. "A modularity-maximization-based approach for detecting multi-communities in social networks," Annals of Operations Research, Springer, vol. 303(1), pages 381-411, August.
- Sukeda, Issey & Miyauchi, Atsushi & Takeda, Akiko, 2023. "A study on modularity density maximization: Column generation acceleration and computational complexity analysis," European Journal of Operational Research, Elsevier, vol. 309(2), pages 516-528.
- Harun Pirim & Burak Eksioglu & Fred W. Glover, 2018. "A Novel Mixed Integer Linear Programming Model for Clustering Relational Networks," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 492-508, February.
- Ponce, Diego & Puerto, Justo & Temprano, Francisco, 2024. "Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 519-538.
- Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
- Sonia Cafieri & Alberto Costa & Pierre Hansen, 2014. "Reformulation of a model for hierarchical divisive graph modularity maximization," Annals of Operations Research, Springer, vol. 222(1), pages 213-226, November.
- Atsushi Miyauchi & Yasushi Kawase, 2016. "Z-Score-Based Modularity for Community Detection in Networks," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
- Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.
- Ruijie Liu & Yajing Huang, 2023. "Structural Analysis of Projected Networks of Shareholders and Stocks Based on the Data of Large Shareholders’ Shareholding in China’s Stocks," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
More about this item
Keywords
89.75.Hc Networks and genealogical trees; 05.10.-a Computational methods in statistical physics and nonlinear dynamics; 02.10.Ox Combinatorics; graph theory; 87.23.Ge Dynamics of social systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:66:y:2008:i:3:p:409-418. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.