IDEAS home Printed from https://ideas.repec.org/p/snv/dp2009/2015121.html
   My bibliography  Save this paper

Effect of Homophily on Network Formation

Author

Listed:
  • Kibae Kim

    (Technology Management, Economics, and Policy Program; College of Engineering; Seoul National University)

  • Jörn Altmann

    (Technology Management, Economics, and Policy Program; College of Engineering; Seoul National University)

Abstract

Although there is much research on network formation based on the preferential attach- ment rule, the research did not come up with a formula that, on the one hand, can re- produce shapes of cumulative degree distributions of empirical complex networks and, on the other hand, can represent intuitively theories on individual behavior. In this paper, we propose a formula that closes this gap by integrating into the formula for the preferential attachment rule (i.e., a node with higher degree is more likely to gain a new link) a repre- sentation of the theory of individual behavior with respect to nodes preferring to connect to other nodes with similar attributes (i.e., homophily). Based on this formula, we simulate the shapes of cumulative degree distributions for different levels of homophily and five different seed networks. Our simulation results suggest that homophily and the preferential attachment rule interact for all five types of seed networks. Surprisingly, the resulting cumulative degree distribution in log-log scale always shifts from a concave shape to a convex shape, as the level of homophily gets larger. Therefore, our formula can explain intuitively why some of the empirical complex networks show a linear cumulative degree distribution in log-log scale while others show either a concave or convex shape. Furthermore, another major finding indicates that homophily makes people of a group richer than people outside this group, which is a surprising and significant finding.

Suggested Citation

  • Kibae Kim & Jörn Altmann, 2015. "Effect of Homophily on Network Formation," TEMEP Discussion Papers 2015121, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2017.
  • Handle: RePEc:snv:dp2009:2015121
    as

    Download full text from publisher

    File URL: http://temep-repec.my-groups.de/DP-121.pdf
    File Function: Second Version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bramoullé, Yann & Currarini, Sergio & Jackson, Matthew O. & Pin, Paolo & Rogers, Brian W., 2012. "Homophily and long-run integration in social networks," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1754-1786.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    4. Dangalchev, Chavdar, 2004. "Generation models for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 659-671.
    5. Wagner, Caroline S. & Leydesdorff, Loet, 2005. "Network structure, self-organization, and the growth of international collaboration in science," Research Policy, Elsevier, vol. 34(10), pages 1608-1618, December.
    6. Yuhai Tu, 2000. "How robust is the Internet?," Nature, Nature, vol. 406(6794), pages 353-354, July.
    7. B. J. Kim & A. Trusina & P. Minnhagen & K. Sneppen, 2005. "Self organized scale-free networks from merging and regeneration," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 43(3), pages 369-372, February.
    8. Wu, Fang & Huberman, Bernardo A. & Adamic, Lada A. & Tyler, Joshua R., 2004. "Information flow in social groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 327-335.
    9. Kibae Kim & Jorn Altmann & Junseok Hwang, 2010. "The Impact of the Subgroup Structure on the Evolution of Networks: An Economic Model of Network Evolution," TEMEP Discussion Papers 201056, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Feb 2010.
    10. Kibae Kim & Jorn Altmann & Junseok Hwang, 2010. "An Analysis of the Openness of the Web2.0 Service Network Based on Two Sets of Indices for Measuring the Impact of Service Ownership," TEMEP Discussion Papers 201067, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Oct 2010.
    11. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    12. Junseok Hwang & Jorn Altmann & Kibae Kim, 2009. "The Structural Evolution of the Web2.0 Service Network," TEMEP Discussion Papers 200914, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Sep 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahmooresnejad, Leila & Turkina, Ekaterina, 2022. "Female inventors over time: Factors affecting female Inventors’ innovation performance," Journal of Informetrics, Elsevier, vol. 16(1).
    2. He, Chaocheng & Liu, Fuzhen & Dong, Ke & Wu, Jiang & Zhang, Qingpeng, 2023. "Research on the formation mechanism of research leadership relations: An exponential random graph model analysis approach," Journal of Informetrics, Elsevier, vol. 17(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kibae Kim & Jorn Altmann, 2013. "Evolution of the Software-as-a-Service Innovation System Through Collective Intelligence," TEMEP Discussion Papers 2013108, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Dec 2013.
    2. Sodam Baek & Kibae Kim & Jorn Altmann, 2014. "Role of Platform Providers in Service Networks: The Case of Salesforce.com AppExchange," TEMEP Discussion Papers 2014112, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised May 2014.
    3. Kibae Kim & Jorn Altmann, 2011. "A Complex Network Analysis of the Weighted Graph of the Web2.0 Service Network," TEMEP Discussion Papers 201178, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Jul 2011.
    4. Kibae Kim & Jorn Altmann & Junseok Hwang, 2010. "An Analysis of the Openness of the Web2.0 Service Network Based on Two Sets of Indices for Measuring the Impact of Service Ownership," TEMEP Discussion Papers 201067, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Oct 2010.
    5. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    6. Kim, Kibae & Jung, Sungdo & Lee, Changjun & Hwang, Junseok, 2013. "Structure of technology evolution: The way on which ICT industry emerged in Korea," 24th European Regional ITS Conference, Florence 2013 88508, International Telecommunications Society (ITS).
    7. Kibae Kim & Jörn Altmann & Sodam Baek, 2015. "Role of Platform Providers in Software Ecosystems," TEMEP Discussion Papers 2015120, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Jan 2015.
    8. Kibae Kim & Wool-rim Lee & Jorn Altmann, 2014. "SNA-Based Innovation Trend Analysis in Software Service Networks," TEMEP Discussion Papers 2014115, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Aug 2014.
    9. Abbasi, Alireza & Hossain, Liaquat & Leydesdorff, Loet, 2012. "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 403-412.
    10. Mehmet Ali Koseoglu, 2016. "Mapping the institutional collaboration network of strategic management research: 1980–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 203-226, October.
    11. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    12. Michael Boss & Helmut Elsinger & Martin Summer & Stefan Thurner, 2004. "Network topology of the interbank market," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 677-684.
    13. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    14. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    15. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    17. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    18. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    19. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    20. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.

    More about this item

    Keywords

    Complex Social Network Evolution; Cumulative Degree Distribution; Preferential Attachment Rule and Homophily; Empirical Data and Simulation.;
    All these keywords.

    JEL classification:

    • A12 - General Economics and Teaching - - General Economics - - - Relation of Economics to Other Disciplines
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:snv:dp2009:2015121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jorn Altmann (email available below). General contact details of provider: https://edirc.repec.org/data/tesnukr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.