IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v41y2024i3d10.1007_s00357-024-09476-0.html
   My bibliography  Save this article

Automatic Topic Title Assignment with Word Embedding

Author

Listed:
  • Gianpaolo Zammarchi

    (University of Cagliari)

  • Maurizio Romano

    (University of Cagliari)

  • Claudio Conversano

    (University of Cagliari)

Abstract

In this paper, we propose TAWE (title assignment with word embedding), a new method to automatically assign titles to topics inferred from sets of documents. This method combines the results obtained from the topic modeling performed with, e.g., latent Dirichlet allocation (LDA) or other suitable methods and the word embedding representation of words in a vector space. This representation preserves the meaning of the words while allowing to find the most suitable word that represents the topic. The procedure is twofold: first, a cleaned text is used to build the LDA model to infer a desirable number of latent topics; second, a reasonable number of words and their weights are extracted from each topic and represented in n-dimensional space using word embedding. Based on the selected weighted words, a centroid is computed, and the closest word is chosen as the title of the topic. To test the method, we used a collection of tweets about climate change downloaded from some of the main newspapers accounts on Twitter. Results showed that TAWE is a suitable method for automatically assigning a topic title.

Suggested Citation

  • Gianpaolo Zammarchi & Maurizio Romano & Claudio Conversano, 2024. "Automatic Topic Title Assignment with Word Embedding," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 650-677, November.
  • Handle: RePEc:spr:jclass:v:41:y:2024:i:3:d:10.1007_s00357-024-09476-0
    DOI: 10.1007/s00357-024-09476-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-024-09476-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-024-09476-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Killick, Rebecca & Eckley, Idris A., 2014. "changepoint: An R Package for Changepoint Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i03).
    2. Dumanovsky, T. & Huang, C.Y. & Bassett, M.T. & Silver, L.D., 2010. "Consumer awareness of fast-food calorie information in new york city after implementation of a menu labeling regulation," American Journal of Public Health, American Public Health Association, vol. 100(12), pages 2520-2525.
    3. Thomas Marlow & Sean Miller & J. Timmons Roberts, 2021. "Bots and online climate discourses: Twitter discourse on President Trump’s announcement of U.S. withdrawal from the Paris Agreement," Climate Policy, Taylor & Francis Journals, vol. 21(6), pages 765-777, July.
    4. Mary Sanford & James Painter & Taha Yasseri & Jamie Lorimer, 2021. "Controversy around climate change reports: a case study of Twitter responses to the 2019 IPCC report on land," Climatic Change, Springer, vol. 167(3), pages 1-25, August.
    5. Jeong, Byeongki & Yoon, Janghyeok & Lee, Jae-Min, 2019. "Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis," International Journal of Information Management, Elsevier, vol. 48(C), pages 280-290.
    6. Robert Thorndike, 1953. "Who belongs in the family?," Psychometrika, Springer;The Psychometric Society, vol. 18(4), pages 267-276, December.
    7. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kei Nakagawa & Kohei Hayashi & Yugo Fujimoto, 2024. "CFTM: Continuous time fractional topic model," Papers 2402.01734, arXiv.org, revised Feb 2024.
    2. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    3. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    4. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    5. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    6. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    7. Becken, Susanne & Stantic, Bela & Chen, Jinyan & Connolly, Rod M., 2022. "Twitter conversations reveal issue salience of aviation in the broader context of climate change," Journal of Air Transport Management, Elsevier, vol. 98(C).
    8. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    9. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Ahlrichs, Jakob, 2022. "The influence of risk perception on energy efficiency investments: Evidence from a German survey," Energy Policy, Elsevier, vol. 167(C).
    10. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    11. Nasrabadi, Mohamadreza Azar & Beauregard, Yvan & Ekhlassi, Amir, 2024. "The implication of user-generated content in new product development process: A systematic literature review and future research agenda," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    12. Petter Arnesen & Odd A. Hjelkrem, 2018. "An Estimator for Traffic Breakdown Probability Based on Classification of Transitional Breakdown Events," Transportation Science, INFORMS, vol. 52(3), pages 593-602, June.
    13. Gregory, Christian & Rahkovsky, Ilya & Anekwe, Tobenna D., 2014. "Consumers’ Use of Nutrition Information When Eating Out," Economic Information Bulletin 174796, United States Department of Agriculture, Economic Research Service.
    14. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    15. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    16. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    17. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    18. Malte Willmes & Katherine M Ransom & Levi S Lewis & Christian T Denney & Justin J G Glessner & James A Hobbs, 2018. "IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
    19. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    20. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:41:y:2024:i:3:d:10.1007_s00357-024-09476-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.