IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i3p593-602.html
   My bibliography  Save this article

An Estimator for Traffic Breakdown Probability Based on Classification of Transitional Breakdown Events

Author

Listed:
  • Petter Arnesen

    (Department of Transport Research, SINTEF Technology and Society, NO-7465 Trondheim, Norway)

  • Odd A. Hjelkrem

    (Department of Transport Research, SINTEF Technology and Society, NO-7465 Trondheim, Norway)

Abstract

In this paper we propose a new estimator for calculating the probability of traffic breakdown as a function of traffic demand. Traffic breakdown is a well-studied phenomena within previous literature and is of great importance to traffic planners and controllers. The proposed estimator has an appealing intuition and is able to overcome several of the problems associated with previously proposed methodology. The input to the estimator is a set of aggregated (typically five minute) traffic observations classified to either a breakdown or nonbreakdown state, and a customized and fast algorithm for this purpose is proposed. Last, we apply the classification algorithm and breakdown probability estimator to a large data set consisting of several observation sites on the Norwegian road network, and we compare our estimator to a previously defined estimator.

Suggested Citation

  • Petter Arnesen & Odd A. Hjelkrem, 2018. "An Estimator for Traffic Breakdown Probability Based on Classification of Transitional Breakdown Events," Transportation Science, INFORMS, vol. 52(3), pages 593-602, June.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:3:p:593-602
    DOI: 10.1287/trsc.2017.0776
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0776
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shiomi, Yasuhiro & Yoshii, Toshio & Kitamura, Ryuichi, 2011. "Platoon-based traffic flow model for estimating breakdown probability at single-lane expressway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1314-1330.
    2. Killick, Rebecca & Eckley, Idris A., 2014. "changepoint: An R Package for Changepoint Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i03).
    3. Davis, L.C., 2006. "Controlling traffic flow near the transition to the synchronous flow phase," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 541-550.
    4. Xiqun (Michael) Chen & Zhiheng Li & Li Li & Qixin Shi, 2014. "A Traffic Breakdown Model Based on Queueing Theory," Networks and Spatial Economics, Springer, vol. 14(3), pages 485-504, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    2. Kathrin Goldmann & Gernot Sieg, 2020. "Quantifying the phantom jam externality: The case of an Autobahn section in Germany," Working Papers 30, Institute of Transport Economics, University of Muenster.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    2. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    3. Malte Willmes & Katherine M Ransom & Levi S Lewis & Christian T Denney & Justin J G Glessner & James A Hobbs, 2018. "IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
    4. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    5. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    6. Tasadduq Imam, 2021. "Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1808-1824, April.
    7. Raputsoane, Leroi, 2018. "Temporal homogeneity between financial stress and the economic cycle," MPRA Paper 91119, University Library of Munich, Germany.
    8. Hui Zhang & Minna Väliranta & Graeme T. Swindles & Marco A. Aquino-López & Donal Mullan & Ning Tan & Matthew Amesbury & Kirill V. Babeshko & Kunshan Bao & Anatoly Bobrov & Viktor Chernyshov & Marissa , 2022. "Recent climate change has driven divergent hydrological shifts in high-latitude peatlands," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Subhashis Chatterjee & Ankur Shukla, 2016. "Change point–based software reliability model under imperfect debugging with revised concept of fault dependency," Journal of Risk and Reliability, , vol. 230(6), pages 579-597, December.
    10. Josephine R. Paris & James R. Whiting & Mitchel J. Daniel & Joan Ferrer Obiol & Paul J. Parsons & Mijke J. Zee & Christopher W. Wheat & Kimberly A. Hughes & Bonnie A. Fraser, 2022. "A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    12. C Jara-Figueroa & Amy Z Yu & César A Hidalgo, 2019. "How the medium shapes the message: Printing and the rise of the arts and sciences," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-14, February.
    13. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    14. Manfren, Massimiliano & Nastasi, Benedetto, 2023. "Interpretable data-driven building load profiles modelling for Measurement and Verification 2.0," Energy, Elsevier, vol. 283(C).
    15. Rafaï, Ismaël & Blayac, Thierry & Dubois, Dimitri & Duchêne, Sébastien & Nguyen-Van, Phu & Ventelou, Bruno & Willinger, Marc, 2023. "Stated preferences outperform elicited preferences for predicting reported compliance with COVID-19 prophylactic measures," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 107(C).
    16. Tiago Tamagusko & Adelino Ferreira, 2020. "Data-Driven Approach to Understand the Mobility Patterns of the Portuguese Population during the COVID-19 Pandemic," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    17. Hossein Samadi & Iman Aghayan & Khaled Shaaban & Farhad Hadadi, 2023. "Development of Performance Measurement Models for Two-Lane Roads under Vehicular Platooning Using Conjugate Bayesian Analysis," Sustainability, MDPI, vol. 15(5), pages 1-26, February.
    18. Li, Boyan & Diao, Xundi, 2023. "Structural break in different stock index markets in China," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    19. Beytía, Pablo & Infante, Carlos Cruz, 2020. "Digital Pathways, Pandemic Trajectories. Using Google Trends to Track Social Responses to COVID-19," SocArXiv yndb7, Center for Open Science.
    20. Kuebart, Andreas & Stabler, Martin, 2023. "Waves in time, but not in space – an analysis of pandemic severity of COVID-19 in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:3:p:593-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.