IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v48y2019icp280-290.html
   My bibliography  Save this article

Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis

Author

Listed:
  • Jeong, Byeongki
  • Yoon, Janghyeok
  • Lee, Jae-Min

Abstract

Social media data have recently attracted considerable attention as an emerging voice of the customer as it has rapidly become a channel for exchanging and storing customer-generated, large-scale, and unregulated voices about products. Although product planning studies using social media data have used systematic methods for product planning, their methods have limitations, such as the difficulty of identifying latent product features due to the use of only term-level analysis and insufficient consideration of opportunity potential analysis of the identified features. Therefore, an opportunity mining approach is proposed in this study to identify product opportunities based on topic modeling and sentiment analysis of social media data. For a multifunctional product, this approach can identify latent product topics discussed by product customers in social media using topic modeling, thereby quantifying the importance of each product topic. Next, the satisfaction level of each product topic is evaluated using sentiment analysis. Finally, the opportunity value and improvement direction of each product topic from a customer-centered view are identified by an opportunity algorithm based on product topics’ importance and satisfaction. We expect that our approach for product planning will contribute to the systematic identification of product opportunities from large-scale customer-generated social media data and will be used as a real-time monitoring tool for changing customer needs analysis in rapidly evolving product environments.

Suggested Citation

  • Jeong, Byeongki & Yoon, Janghyeok & Lee, Jae-Min, 2019. "Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis," International Journal of Information Management, Elsevier, vol. 48(C), pages 280-290.
  • Handle: RePEc:eee:ininma:v:48:y:2019:i:c:p:280-290
    DOI: 10.1016/j.ijinfomgt.2017.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401217302955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2017.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kei Nakagawa & Kohei Hayashi & Yugo Fujimoto, 2024. "CFTM: Continuous time fractional topic model," Papers 2402.01734, arXiv.org, revised Feb 2024.
    2. Zhen-Yu Chen & Xin-Li Liu & Li-Ping Yin, 2023. "Data-driven product configuration improvement and product line restructuring with text mining and multitask learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2043-2059, April.
    3. Park, Jeongeun & Yang, Donguk & Kim, Ha Young, 2023. "Text mining-based four-step framework for smart speaker product improvement and sales planning," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    4. Salman Sigari & Amir. H. Gandomi, 2022. "Analyzing the past, improving the future: a multiscale opinion tracking model for optimizing business performance," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.
    5. Farzadnia, Siavash & Raeesi Vanani, Iman, 2022. "Identification of opinion trends using sentiment analysis of airlines passengers' reviews," Journal of Air Transport Management, Elsevier, vol. 103(C).
    6. Zijing Ye & Ruisi Li & Jing Wu, 2022. "Dynamic Demand Evaluation of COVID-19 Medical Facilities in Wuhan Based on Public Sentiment," IJERPH, MDPI, vol. 19(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:48:y:2019:i:c:p:280-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.