IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i502p577-588.html
   My bibliography  Save this article

Clustering High-Dimensional Time Series Based on Parallelism

Author

Listed:
  • Ting Zhang

Abstract

This article considers the problem of clustering high-dimensional time series based on trend parallelism. The underlying process is modeled as a nonparametric trend function contaminated by locally stationary errors, a special class of nonstationary processes. For each group where the parallelism holds, I semiparametrically estimate its representative trend function and vertical shifts of group members, and establish their central limit theorems. An information criterion, consisting of in-group similarities and number of groups, is then proposed for the purpose of clustering. I prove its theoretical consistency and propose a splitting-coalescence algorithm to reduce the computational burden in practice. The method is illustrated by both simulation and a real-data example.

Suggested Citation

  • Ting Zhang, 2013. "Clustering High-Dimensional Time Series Based on Parallelism," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 577-588, June.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:502:p:577-588
    DOI: 10.1080/01621459.2012.760458
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.760458
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.760458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    2. Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Inference of Grouped Time-Varying Network Vector Autoregression Models," Monash Econometrics and Business Statistics Working Papers 5/23, Monash University, Department of Econometrics and Business Statistics.
    3. Lyubchich, Vyacheslav & Gel, Yulia R., 2016. "A local factor nonparametric test for trend synchronism in multiple time series," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 91-104.
    4. Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Estimation of Grouped Time-Varying Network Vector Autoregression Models," Papers 2303.10117, arXiv.org, revised Mar 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:502:p:577-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.