IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v34y2017i2d10.1007_s00357-017-9233-y.html
   My bibliography  Save this article

The Effect of Model Misspecification on Growth Mixture Model Class Enumeration

Author

Listed:
  • Daniel McNeish

    (University of Maryland)

  • Jeffrey R. Harring

    (University of Maryland)

Abstract

Multiple criteria have been proposed to aid in deciding how many latent classes to extract in growth mixture models; however, studies are just beginning to investigate the performance of these criteria under non-ideal conditions. We review these previous studies and conduct a simulation study to address the performance of fit criteria under two previously uninvestigated assumption violations: (1) linearity of covariates and (2) proper specification of the growth factor covariance matrix. Results show that, provided that estimation is carried out with a large number of random starts and final stage optimizations, BIC and the bootstrap likelihood ratio test perform exceedingly well at identifying whether the data are homogenous or whether latent classes may be present, even with misspecifications present. Results were far less favorable when software default estimation choices were selected. We discuss implications to empirical studies and speculate on the relation between estimation choices and fit criteria perform.

Suggested Citation

  • Daniel McNeish & Jeffrey R. Harring, 2017. "The Effect of Model Misspecification on Growth Mixture Model Class Enumeration," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 223-248, July.
  • Handle: RePEc:spr:jclass:v:34:y:2017:i:2:d:10.1007_s00357-017-9233-y
    DOI: 10.1007/s00357-017-9233-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-017-9233-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-017-9233-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    2. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    3. Douglas Steinley & Michael J. Brusco, 2007. "Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques," Journal of Classification, Springer;The Classification Society, vol. 24(1), pages 99-121, June.
    4. Bobby L. Jones & Daniel S. Nagin & Kathryn Roeder, 2001. "A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories," Sociological Methods & Research, , vol. 29(3), pages 374-393, February.
    5. Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
    6. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Y. Lee & Jeffrey R. Harring, 2023. "Handling Missing Data in Growth Mixture Models," Journal of Educational and Behavioral Statistics, , vol. 48(3), pages 320-348, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    2. Roy Levy & Gregory R. Hancock, 2011. "An Extended Model Comparison Framework for Covariance and Mean Structure Models, Accommodating Multiple Groups and Latent Mixtures," Sociological Methods & Research, , vol. 40(2), pages 256-278, May.
    3. Inga Schnuerer & Sophie Baumann & Katja Haberecht & Beate Gaertner & Ulrich John & Jennis Freyer-Adam, 2015. "Patterns of health risk behaviors among job-seekers: a latent class analysis," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 60(1), pages 111-119, January.
    4. Alan C. Y. Tong & Emily W. S. Tsoi & Winnie W. S. Mak, 2021. "Socioeconomic Status, Mental Health, and Workplace Determinants among Working Adults in Hong Kong: A Latent Class Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    5. Lo, Yungtai, 2005. "Likelihood ratio tests of the number of components in a normal mixture with unequal variances," Statistics & Probability Letters, Elsevier, vol. 71(3), pages 225-235, March.
    6. Po-Hsien Huang, 2017. "Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 407-426, June.
    7. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    8. Riser, Quentin H. & Rouse, Heather L. & Dorius, Cassandra J., 2023. "Association between early income variation around poverty thresholds, income trajectories, and birth, child, and family characteristics," Children and Youth Services Review, Elsevier, vol. 145(C).
    9. Liam Mahedy & Flora Todaro-Luck & Brendan Bunting & Samuel Murphy & Karen Kirby, 2013. "Risk factors for psychological distress in Northern Ireland," International Journal of Social Psychiatry, , vol. 59(7), pages 646-654, November.
    10. Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
    11. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    12. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    13. Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
    14. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    15. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    16. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    17. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    18. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    19. Luis Garicano & Thomas N. Hubbard, 2016. "The Returns to Knowledge Hierarchies," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
    20. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:34:y:2017:i:2:d:10.1007_s00357-017-9233-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.