IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i2d10.1007_s11336-017-9572-y.html
   My bibliography  Save this article

Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling

Author

Listed:
  • Po-Hsien Huang

    (National Cheng Kung University)

Abstract

Model selection is a popular strategy in structural equation modeling (SEM). To select an “optimal” model, many selection criteria have been proposed. In this study, we derive the asymptotics of several popular selection procedures in SEM, including AIC, BIC, the RMSEA, and a two-stage rule for the RMSEA (RMSEA-2S). All of the results are derived under weak distributional assumptions and can be applied to a wide class of discrepancy functions. The results show that both AIC and BIC asymptotically select a model with the smallest population minimum discrepancy function (MDF) value regardless of nested or non-nested selection, but only BIC could consistently choose the most parsimonious one under nested model selection. When there are many non-nested models attaining the smallest MDF value, the consistency of BIC for the most parsimonious one fails. On the other hand, the RMSEA asymptotically selects a model that attains the smallest population RMSEA value, and the RESEA-2S chooses the most parsimonious model from all models with the population RMSEA smaller than the pre-specified cutoff. The empirical behavior of the considered criteria is also illustrated via four numerical examples.

Suggested Citation

  • Po-Hsien Huang, 2017. "Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 407-426, June.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-017-9572-y
    DOI: 10.1007/s11336-017-9572-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-017-9572-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-017-9572-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, Joseph G. & Zhu, Hongtu & Tang, Niansheng, 2008. "Model Selection Criteria for Missing-Data Problems Using the EM Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1648-1658.
    2. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    3. Albert Satorra & Peter Bentler, 2001. "A scaled difference chi-square test statistic for moment structure analysis," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 507-514, December.
    4. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    5. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    6. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    7. P. Bentler & David Weeks, 1980. "Linear structural equations with latent variables," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 289-308, September.
    8. Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
    9. Shapiro, Alexander, 2009. "Asymptotic normality of test statistics under alternative hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 936-945, May.
    10. Albert Satorra, 1989. "Alternative test criteria in covariance structure analysis: A unified approach," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 131-151, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Wang & Shiyi Zhang & Tao Xin, 2022. "Item Response Theory Analysis of the Dark Factor of Personality Scale for College Students in China," IJERPH, MDPI, vol. 19(19), pages 1-17, October.
    2. Henseler, Jörg & Schuberth, Florian, 2020. "Using confirmatory composite analysis to assess emergent variables in business research," Journal of Business Research, Elsevier, vol. 120(C), pages 147-156.
    3. Nobel, Anne & Lizin, Sebastien & Witters, Nele & Rineau, Francois & Malina, Robert, 2020. "The impact of wildfires on the recreational value of heathland: A discrete factor approach with adjustment for on-site sampling," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    4. Anna Szép & Slava Dantchev & Martina Zemp & Malte Schwinger & Mira-Lynn Chavanon & Hanna Christiansen, 2021. "Facilitators and Barriers of Teachers’ Use of Effective Classroom Management Strategies for Students with ADHD: A Model Analysis Based on Teachers’ Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    5. Michele Roccato & Nicoletta Cavazza & Pasquale Colloca & Silvia Russo, 2020. "Three Roads to Populism? An Italian Field Study on the 2019 European Election," Social Science Quarterly, Southwestern Social Science Association, vol. 101(4), pages 1222-1235, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    2. Roy Levy & Gregory R. Hancock, 2011. "An Extended Model Comparison Framework for Covariance and Mean Structure Models, Accommodating Multiple Groups and Latent Mixtures," Sociological Methods & Research, , vol. 40(2), pages 256-278, May.
    3. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    4. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    5. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    6. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    7. Wang, Wan-Lun & Castro, Luis M. & Lin, Tsung-I, 2017. "Automated learning of t factor analysis models with complete and incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 157-171.
    8. Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
    9. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2016. "Generalized Information Matrix Tests for Detecting Model Misspecification," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    10. Stanislav Kolenikov & Kenneth A. Bollen, 2012. "Testing Negative Error Variances," Sociological Methods & Research, , vol. 41(1), pages 124-167, February.
    11. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    13. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    14. Aline Riboli Marasca & Maurício Scopel Hoffmann & Anelise Reis Gaya & Denise Ruschel Bandeira, 2021. "Subjective Well-Being and Psychopathology Symptoms: Mental Health Profiles and their Relations with Academic Achievement in Brazilian Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(3), pages 1121-1137, June.
    15. In-Koo Cho & Kenneth Kasa, 2015. "Learning and Model Validation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 45-82.
    16. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    17. Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
    18. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    19. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    20. Chun, So Yeon & Alexander, Shapiro, 2009. "Normal versus Noncentral Chi-square Asymptotics of Misspecified Models," MPRA Paper 17310, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-017-9572-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.