An Extended Model Comparison Framework for Covariance and Mean Structure Models, Accommodating Multiple Groups and Latent Mixtures
Author
Abstract
Suggested Citation
DOI: 10.1177/0049124111404819
Download full text from publisher
References listed on IDEAS
- Mizon, Grayham E & Richard, Jean-Francois, 1986. "The Encompassing Principle and Its Application to Testing Non-nested Hypotheses," Econometrica, Econometric Society, vol. 54(3), pages 657-678, May.
- White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
- G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
- Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
- Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
- Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
- Neal O. Jeffries, 2003. "A note on 'Testing the number of components in a normal mixture'," Biometrika, Biometrika Trust, vol. 90(4), pages 991-994, December.
- Robert Mislevy & Norman Verhelst, 1990. "Modeling item responses when different subjects employ different solution strategies," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 195-215, June.
- Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
- Po-Hsien Huang, 2017. "Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 407-426, June.
- Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
- Susanne M. Schennach & Daniel Wilhelm, 2017.
"A Simple Parametric Model Selection Test,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1663-1674, October.
- Susanne M. Schennach & Daniel Wilhelm, 2014. "A simple parametric model selection test," CeMMAP working papers CWP10/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Susanne M. Schennach & Daniel Wilhelm, 2016. "A simple parametric model selection test," CeMMAP working papers 30/16, Institute for Fiscal Studies.
- Susanne M. Schennach & Daniel Wilhelm, 2016. "A simple parametric model selection test," CeMMAP working papers CWP30/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Susanne M. Schennach & Daniel Wilhelm, 2014. "A simple parametric model selection test," CeMMAP working papers 10/14, Institute for Fiscal Studies.
- Gouriéroux, Christian, 1994. "Modèles économétriques : utilisation et interprétation (les)," CEPREMAP Working Papers (Couverture Orange) 9423, CEPREMAP.
- repec:jss:jstsof:06:i02 is not listed on IDEAS
- Otsu, Taisuke & Whang, Yoon-Jae, 2011.
"Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
- Taisuke Otsu & Yoon-Jae Whang, 2005. "Testing for Non-nested Conditional Moment Retrictions via Conditional Empirical Likelihood," Cowles Foundation Discussion Papers 1533, Cowles Foundation for Research in Economics, Yale University.
- D. R. Cox, 2013. "A return to an old paper: ‘Tests of separate families of hypotheses’," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 207-215, March.
- Christophe Bontemps & Grayham E. Mizon, 2008. "Encompassing: Concepts and Implementation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 721-750, December.
- Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
- Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.
- Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
- Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015.
"A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses,"
Working Papers
410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
- Francesco, Bartolucci & Silvia, Bacci & Claudia, Pigini, 2015. "A misspecification test for finite-mixture logistic models for clustered binary and ordered responses," MPRA Paper 64220, University Library of Munich, Germany.
- Daniel McNeish & Jeffrey R. Harring, 2017. "The Effect of Model Misspecification on Growth Mixture Model Class Enumeration," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 223-248, July.
- Yang, Chih-Chien, 2006. "Evaluating latent class analysis models in qualitative phenotype identification," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1090-1104, February.
- Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2016. "Generalized Information Matrix Tests for Detecting Model Misspecification," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
- Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
- Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
- Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
- Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
- Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
More about this item
Keywords
model comparisons; structural equation modeling; bootstrap; multiple-group model; mixture model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:40:y:2011:i:2:p:256-278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.