Handling Missing Data in Growth Mixture Models
Author
Abstract
Suggested Citation
DOI: 10.3102/10769986221149140
Download full text from publisher
References listed on IDEAS
- Donald B. Rubin, 2003. "Nested multiple imputation of NMES via partially incompatible MCMC," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 3-18, February.
- Eric F. Lock & Nidhi Kohli & Maitreyee Bose, 2018. "Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 733-750, September.
- Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
- Casey Codd & Robert Cudeck, 2014. "Nonlinear Random-Effects Mixture Models for Repeated Measures," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 60-83, January.
- Ofer Harel, 2009. "The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1109-1118.
- William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
- Daniel McNeish & Jeffrey R. Harring, 2017. "The Effect of Model Misspecification on Growth Mixture Model Class Enumeration," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 223-248, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
- Pennoni, Fulvia & Romeo, Isabella, 2016. "Latent Markov and growth mixture models for ordinal individual responses with covariates: a comparison," MPRA Paper 72939, University Library of Munich, Germany.
- Daniel M. McNeish, 2016. "Using Data-Dependent Priors to Mitigate Small Sample Bias in Latent Growth Models," Journal of Educational and Behavioral Statistics, , vol. 41(1), pages 27-56, February.
- Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
- Jost Reinecke & Daniel Seddig, 2011. "Growth mixture models in longitudinal research," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 415-434, December.
- Casey Codd & Robert Cudeck, 2014. "Nonlinear Random-Effects Mixture Models for Repeated Measures," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 60-83, January.
- Lu, Zhenqiu (Laura) & Zhang, Zhiyong, 2014. "Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 220-240.
- repec:jss:jstsof:45:i03 is not listed on IDEAS
- Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
- Yih-Ing Hser & Haikang Shen & Chih-Ping Chou & Stephen C. Messer & M. Douglas Anglin, 2001. "Analytic Approaches for Assessing Long-Term Treatment Effects," Evaluation Review, , vol. 25(2), pages 233-262, April.
- Michael Prendergast & David Huang & Yih-Ing Hser, 2008. "Patterns of Crime and Drug Use Trajectories in Relation to Treatment Initiation and 5-Year Outcomes," Evaluation Review, , vol. 32(1), pages 59-82, February.
- Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
- Bacci, Silvia & Bartolucci, Francesco & Pigini, Claudia & Signorelli, Marcello, 2014. "A finite mixture latent trajectory model for hirings and separations in the labor market," MPRA Paper 59730, University Library of Munich, Germany.
- Laura Castro-Schilo & Barbara L. Fredrickson & Dan Mungas, 2019. "Association of Positive Affect with Cognitive Health and Decline for Elder Mexican Americans," Journal of Happiness Studies, Springer, vol. 20(8), pages 2385-2400, December.
- Shane S. Dikolli & John C. Heater & William J. Mayew & Mani Sethuraman, 2021. "Chief Financial Officer Co-option and Chief Executive Officer Compensation," Management Science, INFORMS, vol. 67(3), pages 1939-1955, March.
- Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
- Yuan Liu & Hongyun Liu, 2019. "Effects of Distance and Shape on the Estimation of the Piecewise Growth Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 659-677, October.
- Benjamin Agbo & Hussain Al-Aqrabi & Richard Hill & Tariq Alsboui, 2022. "Missing Data Imputation in the Internet of Things Sensor Networks," Future Internet, MDPI, vol. 14(5), pages 1-16, May.
- Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
- Eldad Davidov & Stefan Thörner & Peter Schmidt & Stefanie Gosen & Carina Wolf, 2011. "Level and change of group-focused enmity in Germany: unconditional and conditional latent growth curve models with four panel waves," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 481-500, December.
- Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
More about this item
Keywords
growth mixture models; missing data; multiple imputation; Bayesian;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:48:y:2023:i:3:p:320-348. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.