IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i4d10.1007_s11749-019-00626-w.html
   My bibliography  Save this article

Likelihood-based tests for a class of misspecified finite mixture models for ordinal categorical data

Author

Listed:
  • Roberto Colombi

    (University of Bergamo)

  • Sabrina Giordano

    (University of Calabria)

Abstract

The main purpose of this paper is to apply likelihood-based hypothesis testing procedures to a class of latent variable models for ordinal responses that allow for uncertain answers (Colombi et al. in Scand J Stat, 2018. https://doi.org/10.1111/sjos.12366). As these models are based on some assumptions, needed to describe different respondent behaviors, it is essential to discuss inferential issues without assuming that the tested model is correctly specified. By adapting the works of White (Econometrica 50(1):1–25, 1982) and Vuong (Econometrica 57(2):307–333, 1989), we are able to compare nested models under misspecification and then contrast the limiting distributions of Wald, Lagrange multiplier/score and likelihood ratio statistics with the classical asymptotic Chi-square to show the consequences of ignoring misspecification.

Suggested Citation

  • Roberto Colombi & Sabrina Giordano, 2019. "Likelihood-based tests for a class of misspecified finite mixture models for ordinal categorical data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1175-1202, December.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:4:d:10.1007_s11749-019-00626-w
    DOI: 10.1007/s11749-019-00626-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00626-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00626-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
    2. Bowden, Roger J, 1973. "The Theory of Parametric Identification," Econometrica, Econometric Society, vol. 41(6), pages 1069-1074, November.
    3. Forcina, Antonio, 2008. "Identifiability of extended latent class models with individual covariates," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5263-5268, August.
    4. Gerhard Tutz & Micha Schneider & Maria Iannario & Domenico Piccolo, 2017. "Mixture models for ordinal responses to account for uncertainty of choice," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 281-305, June.
    5. Maria Iannario & Anna Clara Monti & Domenico Piccolo, 2016. "Robustness issues for cub models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 731-750, December.
    6. Anna Gottard & Maria Iannario & Domenico Piccolo, 2016. "Varying uncertainty in CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 225-244, June.
    7. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    8. Rosaria Simone & Gerhard Tutz, 2018. "Modelling uncertainty and response styles in ordinal data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 224-245, August.
    9. Colombi, Roberto & Giordano, Sabrina & Cazzaro, Manuela, 2014. "hmmm: An R Package for Hierarchical Multinomial Marginal Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i11).
    10. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    11. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colombi, Roberto, 2020. "Selection tests for possibly misspecified hierarchical multinomial marginal models," Econometrics and Statistics, Elsevier, vol. 16(C), pages 136-147.
    2. Francesca Iorio & Riccardo Lucchetti & Rosaria Simone, 2024. "Testing distributional assumptions in CUB models for the analysis of rating data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 669-701, September.
    3. Roberto Colombi & Sabrina Giordano & Gerhard Tutz, 2021. "A Rating Scale Mixture Model to Account for the Tendency to Middle and Extreme Categories," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 682-716, December.
    4. Roberto Colombi & Sabrina Giordano & Anna Gottard, 2019. "Discussion of “The class of CUB models: statistical foundations, inferential issues and empirical evidence”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 441-444, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colombi, Roberto, 2020. "Selection tests for possibly misspecified hierarchical multinomial marginal models," Econometrics and Statistics, Elsevier, vol. 16(C), pages 136-147.
    2. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    3. Roberto Colombi & Sabrina Giordano & Gerhard Tutz, 2021. "A Rating Scale Mixture Model to Account for the Tendency to Middle and Extreme Categories," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 682-716, December.
    4. Simone, Rosaria & Tutz, Gerhard & Iannario, Maria, 2020. "Subjective heterogeneity in response attitude for multivariate ordinal outcomes," Econometrics and Statistics, Elsevier, vol. 14(C), pages 145-158.
    5. E. Nardo & R. Simone, 2019. "A model-based fuzzy analysis of questionnaires," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 187-215, June.
    6. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    8. Chrysanthos Dellarocas & Charles A. Wood, 2008. "The Sound of Silence in Online Feedback: Estimating Trading Risks in the Presence of Reporting Bias," Management Science, INFORMS, vol. 54(3), pages 460-476, March.
    9. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    10. Andrew Chesher & Adam Rosen, 2015. "Characterizations of identified sets delivered by structural econometric models," CeMMAP working papers CWP63/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    12. In-Koo Cho & Kenneth Kasa, 2015. "Learning and Model Validation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 45-82.
    13. Juan Carlos Parra-Alvarez & Olaf Posch & Mu-Chun Wang, 2017. "Estimation of Heterogeneous Agent Models: A Likelihood Approach," CESifo Working Paper Series 6717, CESifo.
    14. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    15. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    16. Anna Gottard & Maria Iannario & Domenico Piccolo, 2016. "Varying uncertainty in CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 225-244, June.
    17. Wang, Qingbin & Halbrendt, Catherine & Johnson, Stanley R., 1996. "A non-nested test of the AIDS vs. the translog demand system," Economics Letters, Elsevier, vol. 51(2), pages 139-143, May.
    18. Paarsch, Harry J., 1997. "Deriving an estimate of the optimal reserve price: An application to British Columbian timber sales," Journal of Econometrics, Elsevier, vol. 78(2), pages 333-357, June.
    19. Pedro Brinca & Nikolay Iskrev & Francesca Loria, 2022. "On Identification Issues in Business Cycle Accounting Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 55-138, Emerald Group Publishing Limited.
    20. Eklof, Matias & Lunander, Anders, 2003. "Open outcry auctions with secret reserve prices: an empirical application to executive auctions of tenant owner's apartments in Sweden," Journal of Econometrics, Elsevier, vol. 114(2), pages 243-260, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:4:d:10.1007_s11749-019-00626-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.