IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v28y2023i3d10.1007_s13253-023-00544-3.html
   My bibliography  Save this article

Design of Agricultural Field Experiments Accounting for both Complex Blocking Structures and Network Effects

Author

Listed:
  • Vasiliki Koutra

    (King’s College London)

  • Steven G. Gilmour

    (King’s College London)

  • Ben M. Parker

    (Brunel University London)

  • Andrew Mead

    (Rothamsted Research)

Abstract

We propose a novel model-based approach for constructing optimal designs with complex blocking structures and network effects for application in agricultural field experiments. The potential interference among treatments applied to different plots is described via a network structure, defined via the adjacency matrix. We consider a field trial run at Rothamsted Research and provide a comparison of optimal designs under various different models, specifically new network designs and the commonly used designs in such situations. It is shown that when there is interference between treatments on neighboring plots, designs incorporating network effects to model this interference are at least as efficient as, and often more efficient than, randomized row–column designs. In general, the advantage of network designs is that we can construct the neighbor structure even for an irregular layout by means of a graph to address the particular characteristics of the experiment. As we demonstrate through the motivating example, failing to account for the network structure when designing the experiment can lead to imprecise estimates of the treatment parameters and invalid conclusions.Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Vasiliki Koutra & Steven G. Gilmour & Ben M. Parker & Andrew Mead, 2023. "Design of Agricultural Field Experiments Accounting for both Complex Blocking Structures and Network Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 526-548, September.
  • Handle: RePEc:spr:jagbes:v:28:y:2023:i:3:d:10.1007_s13253-023-00544-3
    DOI: 10.1007/s13253-023-00544-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00544-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00544-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven G. Gilmour & Peter Goos, 2009. "Analysis of data from non‐orthogonal multistratum designs in industrial experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 467-484, September.
    2. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    3. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    4. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    5. Ben M. Parker & Steven G. Gilmour & John Schormans, 2017. "Optimal design of experiments on connected units with application to social networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 455-480, April.
    6. Vasiliki Koutra & Steven G. Gilmour & Ben M. Parker, 2021. "Optimal block designs for experiments on networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 596-618, June.
    7. Laura Forastiere & Edoardo M. Airoldi & Fabrizia Mealli, 2021. "Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 901-918, April.
    8. L. Rob Verdooren, 2020. "History of the Statistical Design of Agricultural Experiments," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 457-486, December.
    9. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    10. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    11. Kunert, Joachim & Martin, R. J., 2000. "On the determination of optimal designs for an interference model," Technical Reports 2000,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Robert M. Bond & Christopher J. Fariss & Jason J. Jones & Adam D. I. Kramer & Cameron Marlow & Jaime E. Settle & James H. Fowler, 2012. "A 61-million-person experiment in social influence and political mobilization," Nature, Nature, vol. 489(7415), pages 295-298, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    2. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    3. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    4. Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
    5. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    6. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    7. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    8. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    9. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    10. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    11. Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
    12. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    13. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    14. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    15. Mäkinen, Taneli & Li, Fan & Mercatanti, Andrea & Silvestrini, Andrea, 2022. "Causal analysis of central bank holdings of corporate bonds under interference," Economic Modelling, Elsevier, vol. 113(C).
    16. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    17. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    18. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    19. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    20. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:28:y:2023:i:3:d:10.1007_s13253-023-00544-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.