IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.00202.html
   My bibliography  Save this paper

Randomization Inference of Heterogeneous Treatment Effects under Network Interference

Author

Listed:
  • Julius Owusu

Abstract

We design randomization tests of heterogeneous treatment effects when units interact on a single connected network. Our modeling strategy allows network interference into the potential outcomes framework using the concept of exposure mapping. We consider a general class of null hypotheses -- representing different notions of constant and no treatment effects -- that are not sharp due to unknown parameters and multiple potential outcomes. To make the nulls sharp, we propose a conditional randomization method that expands on existing procedures. Our conditioning approach permits the use of functions of treatment as a conditioning variable, widening the scope of application of the randomization method of inference. We show that the resulting testing procedures based on our conditioning approach are valid. We demonstrate the testing methods using a network data set and also present the findings of an extensive Monte Carlo study.

Suggested Citation

  • Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2308.00202
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.00202
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    2. Tadao Hoshino & Takahide Yanagi, 2023. "Randomization Test for the Specification of Interference Structure," Papers 2301.05580, arXiv.org, revised Dec 2023.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    5. G W Basse & A Feller & P Toulis, 2019. "Randomization tests of causal effects under interference," Biometrika, Biometrika Trust, vol. 106(2), pages 487-494.
    6. Jing Cai & Alain De Janvry & Elisabeth Sadoulet, 2015. "Social Networks and the Decision to Insure," American Economic Journal: Applied Economics, American Economic Association, vol. 7(2), pages 81-108, April.
    7. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    8. Peng Ding & Avi Feller & Luke Miratrix, 2016. "Randomization inference for treatment effect variation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 655-671, June.
    9. Sarah Baird & J. Aislinn Bohren & Craig McIntosh & Berk Özler, 2018. "Optimal Design of Experiments in the Presence of Interference," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 844-860, December.
    10. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    11. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    12. Chung, EunYi & Olivares, Mauricio, 2021. "Permutation test for heterogeneous treatment effects with a nuisance parameter," Journal of Econometrics, Elsevier, vol. 225(2), pages 148-174.
    13. Seungjin Han & Julius Owusu & Youngki Shin, 2022. "Statistical Treatment Rules under Social Interaction," Papers 2209.09077, arXiv.org, revised Nov 2022.
    14. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julius Owusu, 2024. "A Nonparametric Test of Heterogeneous Treatment Effects under Interference," Papers 2410.00733, arXiv.org.
    2. Liang Zhong, 2024. "Unconditional Randomization Tests for Interference," Papers 2409.09243, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    2. Julius Owusu, 2024. "A Nonparametric Test of Heterogeneous Treatment Effects under Interference," Papers 2410.00733, arXiv.org.
    3. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
    5. Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
    6. Chabé-Ferret, Sylvain & Reynaud, Arnaud & Tène, Eva, 2021. "Water Quality, Policy Diffusion Effects and Farmers’ Behavior," TSE Working Papers 21-1229, Toulouse School of Economics (TSE).
    7. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    8. Tadao Hoshino & Takahide Yanagi, 2023. "Randomization Test for the Specification of Interference Structure," Papers 2301.05580, arXiv.org, revised Dec 2023.
    9. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    10. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    11. Evan Munro & Xu Kuang & Stefan Wager, 2021. "Treatment Effects in Market Equilibrium," Papers 2109.11647, arXiv.org, revised Jun 2024.
    12. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    13. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    14. Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org, revised Oct 2024.
    15. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    16. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    17. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
    18. Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
    19. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    20. Hannah Li & Geng Zhao & Ramesh Johari & Gabriel Y. Weintraub, 2021. "Interference, Bias, and Variance in Two-Sided Marketplace Experimentation: Guidance for Platforms," Papers 2104.12222, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.00202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.