IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v25y2020i4d10.1007_s13253-020-00416-0.html
   My bibliography  Save this article

Multi-level Block Designs for Comparative Experiments

Author

Listed:
  • Rodney N. Edmondson

Abstract

Complete replicate block designs are fully efficient for treatment effects and are the designs of choice for many agricultural field experiments. For experiments with a large number of treatments, however, they may not provide good control of variability over the whole experimental area. Nested incomplete block designs with a single level of nesting can then improve ‘within-block’ homogeneity for moderate sized experiments. For very large designs, however, a single level of nesting may not be adequate and this paper discusses multi-level nesting with hierarchies of nested blocks. Multi-level nested block designs provide a range of block sizes which can improve ‘within-block’ homogeneity over a range of scales of measurement. We discuss design and analysis of multi-level block designs for hierarchies of nested blocks including designs with crossed block factors. We describe an R language package for multi-level block design and we exemplify the design and analysis of multi-level block designs by a simulation study of block designs for cereal variety trials in the UK. Finally, we re-analyse a single large row-and-column field trial for 272 spring barley varieties in 16 rows and 34 columns assuming an additional set of multi-level nested column blocks superimposed on the existing design. For each example, a multi-level mixed blocks analysis is compared with a spatial analysis based on hierarchical generalized additive (HGAM) models. We discuss the combined analysis of random blocks and HGAM smoothers in the same model.

Suggested Citation

  • Rodney N. Edmondson, 2020. "Multi-level Block Designs for Comparative Experiments," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 500-522, December.
  • Handle: RePEc:spr:jagbes:v:25:y:2020:i:4:d:10.1007_s13253-020-00416-0
    DOI: 10.1007/s13253-020-00416-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-020-00416-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-020-00416-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goos, Peter & Vandebroek, Martina, 2001. "-optimal response surface designs in the presence of random block effects," Computational Statistics & Data Analysis, Elsevier, vol. 37(4), pages 433-453, October.
    2. Goos, P. & Donev, A.N., 2006. "Blocking response surface designs," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1075-1088, November.
    3. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasiliki Koutra & Steven G. Gilmour & Ben M. Parker & Andrew Mead, 2023. "Design of Agricultural Field Experiments Accounting for both Complex Blocking Structures and Network Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 526-548, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Teruaki Kido & Yuko Yotsumoto & Masamichi J. Hayashi, 2025. "Hierarchical representations of relative numerical magnitudes in the human frontoparietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    4. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    5. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    7. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    10. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    13. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    14. Evans O. Mudibo & Jasper Bogaert & Caroline Tigoi & Moses M. Ngari & Benson O. Singa & Christina L. Lancioni & Abdoulaye Hama Diallo & Emmie Mbale & Ezekiel Mupere & John Mukisa & Johnstone Thitiri & , 2024. "Systemic biological mechanisms underpin poor post-discharge growth among severely wasted children with HIV," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Lin-Lin Wang & Zachary Y. Huang & Wen-Fei Dai & Yong-Ping Yang & Yuan-Wen Duan, 2024. "Mixed effects of honey bees on pollination function in the Tibetan alpine grasslands," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Szefer Elena & Lu Donghuan & Nathoo Farouk & Beg Mirza Faisal & Graham Jinko, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 367-386, December.
    17. Julien Collet & Samantha C Patrick & Henri Weimerskirch, 2017. "A comparative analysis of the behavioral response to fishing boats in two albatross species," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1337-1347.
    18. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    19. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    20. GOOS, Peter & VERMEULEN, Bart & VANDEBROEK, Martina, 2008. "D-optimal conjoint choice designs with no-choice options for a nested logit model," Working Papers 2008020, University of Antwerp, Faculty of Business and Economics.
    21. Katrijn Delaruelle, 2023. "Migration-related inequalities in loneliness across age groups: a cross-national comparative study in Europe," European Journal of Ageing, Springer, vol. 20(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:25:y:2020:i:4:d:10.1007_s13253-020-00416-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.