IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i534p901-918.html
   My bibliography  Save this article

Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks

Author

Listed:
  • Laura Forastiere
  • Edoardo M. Airoldi
  • Fabrizia Mealli

Abstract

Abstract–Causal inference on a population of units connected through a network often presents technical challenges, including how to account for interference. In the presence of interference, for instance, potential outcomes of a unit depend on their treatment as well as on the treatments of other units, such as their neighbors in the network. In observational studies, a further complication is that the typical unconfoundedness assumption must be extended—say, to include the treatment of neighbors, and individual and neighborhood covariates—to guarantee identification and valid inference. Here, we propose new estimands that define treatment and interference effects. We then derive analytical expressions for the bias of a naive estimator that wrongly assumes away interference. The bias depends on the level of interference but also on the degree of association between individual and neighborhood treatments. We propose an extended unconfoundedness assumption that accounts for interference, and we develop new covariate-adjustment methods that lead to valid estimates of treatment and interference effects in observational studies on networks. Estimation is based on a generalized propensity score that balances individual and neighborhood covariates across units under different levels of individual treatment and of exposure to neighbors’ treatment. We carry out simulations, calibrated using friendship networks and covariates in a nationally representative longitudinal study of adolescents in grades 7–12 in the United States, to explore finite-sample performance in different realistic settings. Supplementary materials for this article are available online.

Suggested Citation

  • Laura Forastiere & Edoardo M. Airoldi & Fabrizia Mealli, 2021. "Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 901-918, April.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:901-918
    DOI: 10.1080/01621459.2020.1768100
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1768100
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1768100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruonan Xu, 2023. "Difference-in-Differences with Interference," Papers 2306.12003, arXiv.org, revised May 2024.
    2. Jizhou Liu, 2023. "Inference for Two-stage Experiments under Covariate-Adaptive Randomization," Papers 2301.09016, arXiv.org, revised Oct 2024.
    3. Ruoxuan Xiong & Alex Chin & Sean J. Taylor, 2024. "Data-Driven Switchback Experiments: Theoretical Tradeoffs and Empirical Bayes Designs," Papers 2406.06768, arXiv.org.
    4. Shaina J. Alexandria & Michael G. Hudgens & Allison E. Aiello, 2023. "Assessing intervention effects in a randomized trial within a social network," Biometrics, The International Biometric Society, vol. 79(2), pages 1409-1419, June.
    5. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    6. Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
    7. Zhichao Jiang & Kosuke Imai & Anup Malani, 2023. "Statistical inference and power analysis for direct and spillover effects in two‐stage randomized experiments," Biometrics, The International Biometric Society, vol. 79(3), pages 2370-2381, September.
    8. Mäkinen, Taneli & Li, Fan & Mercatanti, Andrea & Silvestrini, Andrea, 2022. "Causal analysis of central bank holdings of corporate bonds under interference," Economic Modelling, Elsevier, vol. 113(C).
    9. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    10. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.
    11. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    12. Roberta Di Stefano & Giovanni Mellace, 2020. "The inclusive synthetic control method," Working Papers 21/20, Sapienza University of Rome, DISS.
    13. Vasiliki Koutra & Steven G. Gilmour & Ben M. Parker & Andrew Mead, 2023. "Design of Agricultural Field Experiments Accounting for both Complex Blocking Structures and Network Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 526-548, September.
    14. Valentina Pieroni & Nicola Lattanzi & Massimo Riccaboni, 2024. "The dynamic impact of inter-firm network agreements," Small Business Economics, Springer, vol. 63(3), pages 939-969, October.
    15. Das, Tirthatanmoy & Polachek, Solomon, 2022. "The Econometrics of Antidotal Variables," IZA Discussion Papers 15558, Institute of Labor Economics (IZA).
    16. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    17. Anish Agarwal & Sarah H. Cen & Devavrat Shah & Christina Lee Yu, 2022. "Network Synthetic Interventions: A Causal Framework for Panel Data Under Network Interference," Papers 2210.11355, arXiv.org, revised Oct 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:901-918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.