IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v28y2023i2d10.1007_s13253-022-00522-1.html
   My bibliography  Save this article

Detecting Changes in Dynamic Social Networks Using Multiply-Labeled Movement Data

Author

Listed:
  • Zaineb L. Boulil

    (San Diego State University)

  • John W. Durban

    (Southall Environmental Associates)

  • Holly Fearnbach

    (SR3 SeaLife Response, Rehabilitation and Research)

  • Trevor W. Joyce

    (Environmental Assessment Services)

  • Samantha G. M. Leander

    (Southall Environmental Associates)

  • Henry R. Scharf

    (San Diego State University)

Abstract

The social structure of an animal population can often influence movement and inform researchers on a species’ behavioral tendencies. Animal social networks can be studied through movement data; however, modern sources of data can have identification issues that result in multiply-labeled individuals. Since all available social movement models rely on unique labels, we extend an existing Bayesian hierarchical movement model in a way that makes use of a latent social network and accommodates multiply-labeled movement data (MLMD). We apply our model to drone-measured movement data from Risso’s dolphins (Grampus griseus) and estimate the effects of sonar exposure on the dolphins’ social structure. Our proposed framework can be applied to MLMD for various social movement applications. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Zaineb L. Boulil & John W. Durban & Holly Fearnbach & Trevor W. Joyce & Samantha G. M. Leander & Henry R. Scharf, 2023. "Detecting Changes in Dynamic Social Networks Using Multiply-Labeled Movement Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 243-259, June.
  • Handle: RePEc:spr:jagbes:v:28:y:2023:i:2:d:10.1007_s13253-022-00522-1
    DOI: 10.1007/s13253-022-00522-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-022-00522-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-022-00522-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henry R. Scharf & Mevin B. Hooten & Devin S. Johnson & John W. Durban, 2018. "Process convolution approaches for modeling interacting trajectories," Environmetrics, John Wiley & Sons, Ltd., vol. 29(3), May.
    2. P. G. Blackwell, 2003. "Bayesian inference for Markov processes with diffusion and discrete components," Biometrika, Biometrika Trust, vol. 90(3), pages 613-627, September.
    3. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    4. Mu Niu & Paul G. Blackwell & Anna Skarin, 2016. "Modeling interdependent animal movement in continuous time," Biometrics, The International Biometric Society, vol. 72(2), pages 315-324, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu Niu & Fay Frost & Jordan E. Milner & Anna Skarin & Paul G. Blackwell, 2022. "Modelling group movement with behaviour switching in continuous time," Biometrics, The International Biometric Society, vol. 78(1), pages 286-299, March.
    2. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    3. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
    4. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    5. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    6. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    7. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    8. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    9. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    10. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    12. De Rosis, Alessandro, 2014. "Hydrodynamic effects on a predator approaching a group of preys," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 329-339.
    13. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    14. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    15. Huepe, Cristián & Aldana, Maximino, 2008. "New tools for characterizing swarming systems: A comparison of minimal models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2809-2822.
    16. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    17. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Kim, Jong-Ho & Park, Jea-Hyun, 2022. "Clustering phenomenon of the singular Cucker–Smale model with finite communication weight and variable coupling strength," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.
    20. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:28:y:2023:i:2:d:10.1007_s13253-022-00522-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.