IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i12p2809-2822.html
   My bibliography  Save this article

New tools for characterizing swarming systems: A comparison of minimal models

Author

Listed:
  • Huepe, Cristián
  • Aldana, Maximino

Abstract

We compare three simple models that reproduce qualitatively the emergent swarming behavior of bird flocks, fish schools, and other groups of self-propelled agents by using a new set of diagnosis tools related to the agents’ spatial distribution. Two of these correspond in fact to different implementations of the same model, which had been previously confused in the literature. All models appear to undergo a very similar order-to-disorder phase transition as the noise level is increased if we only compare the standard order parameter, which measures the degree of agent alignment. When considering our novel quantities, however, their properties are clearly distinguished, unveiling previously unreported qualitative characteristics that help determine which model best captures the main features of realistic swarms. Additionally, we analyze the agent clustering in space, finding that the distribution of cluster sizes is typically exponential at high noise, and approaches a power-law as the noise level is reduced. This trend is sometimes reversed at noise levels close to the phase transition, suggesting a non-trivial critical behavior that could be verified experimentally. Finally, we study a bi-stable regime that develops under certain conditions in large systems. By computing the probability distributions of our new quantities, we distinguish the properties of each of the coexisting metastable states. Our study suggests new experimental analyses that could be carried out to characterize real biological swarms.

Suggested Citation

  • Huepe, Cristián & Aldana, Maximino, 2008. "New tools for characterizing swarming systems: A comparison of minimal models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2809-2822.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:12:p:2809-2822
    DOI: 10.1016/j.physa.2008.01.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710800109X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.01.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    2. Czirók, András & Vicsek, Tamás, 2000. "Collective behavior of interacting self-propelled particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 17-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020. "Systemic risk in market microstructure of crude oil and gasoline futures prices: A Hawkes flocking model approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 247-275, February.
    2. M Ulmer & Lori Ziegelmeier & Chad M Topaz, 2019. "A topological approach to selecting models of biological experiments," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-18, March.
    3. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    2. Mirabet, Vincent & Auger, Pierre & Lett, Christophe, 2007. "Spatial structures in simulations of animal grouping," Ecological Modelling, Elsevier, vol. 201(3), pages 468-476.
    3. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    4. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    6. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    7. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    8. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    9. Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
    10. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Mathew Titus & George Hagstrom & James R Watson, 2021. "Unsupervised manifold learning of collective behavior," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-20, February.
    13. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    14. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    15. De Rosis, Alessandro, 2014. "Hydrodynamic effects on a predator approaching a group of preys," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 329-339.
    16. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    17. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    18. Li, Chenyang & Yang, Yonghui & Jiang, Guanjie & Chen, Xue-Bo, 2024. "Flocking for leader ability effect and formation obstacle avoidance of multi-agents based on different potential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    19. Kong, Decheng & Xue, Kai & Wang, Ping, 2024. "Collective queuing motion of self-propelled particles with leadership and experience," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    20. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:12:p:2809-2822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.