IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v17y1993i5p399-404.html
   My bibliography  Save this article

A simple condition for asymptotic optimality of linear predictions of random fields

Author

Listed:
  • Stein, Michael L.

Abstract

Consider linear predictions of a stationary random field at an unobserved location in a bounded region as the observations become increasingly dense in that region. Suppose the ratio of the actual spectral density of the process to the spectral density used to generate the linear predictions tends to a positive finite constant as the frequency increases. Then the sequence of predictions based on the incorrect spectral density and the first n observations are asymptotically optimal as n --> [infinity].

Suggested Citation

  • Stein, Michael L., 1993. "A simple condition for asymptotic optimality of linear predictions of random fields," Statistics & Probability Letters, Elsevier, vol. 17(5), pages 399-404, August.
  • Handle: RePEc:eee:stapro:v:17:y:1993:i:5:p:399-404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(93)90261-G
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arafat, Ahmed & Porcu, Emilio & Bevilacqua, Moreno & Mateu, Jorge, 2018. "Equivalence and orthogonality of Gaussian measures on spheres," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 306-318.
    2. Toshihiro Hirano & Yoshihiro Yajima, 2013. "Covariance tapering for prediction of large spatial data sets in transformed random fields," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 913-939, October.
    3. Wenpin Tang & Lu Zhang & Sudipto Banerjee, 2021. "On identifiability and consistency of the nugget in Gaussian spatial process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1044-1070, November.
    4. Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:17:y:1993:i:5:p:399-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.