IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v142y2020ics0167947319301616.html
   My bibliography  Save this article

Function-on-function quadratic regression models

Author

Listed:
  • Sun, Yifan
  • Wang, Qihua

Abstract

A quadratic regression model where the covariate and the response are both functional is considered, which is a reasonable extension of common function-on-function linear regression models. Methods to estimate the coefficient functions, predict unknown response and test significance of the quadratic term are developed in functional principal component regression paradigm. Asymptotic theories for these approaches are also established. A simulation study is presented to demonstrate the finite sample performances of the proposed methods and an application to real data is used to illustrate the improvement that can be gained by comparing to the function-on-function linear models.

Suggested Citation

  • Sun, Yifan & Wang, Qihua, 2020. "Function-on-function quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301616
    DOI: 10.1016/j.csda.2019.106814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319301616
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.106814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    2. Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.