IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v32y2020i3p725-755.html
   My bibliography  Save this article

Single functional index quantile regression under general dependence structure

Author

Listed:
  • Mohamed Chaouch
  • Amina Angelika Bouchentouf
  • Aboubacar Traore
  • Abbes Rabhi

Abstract

The main purpose of this paper is to estimate, semi-parametrically, the quantiles of a conditional distribution when the response is a real-valued random variable subject to a right-censorship phenomenon and the predictor takes values in an infinite dimensional space. We assume that the explanatory and the response variables are linked through a single-index structure. First, we introduce a kernel-type estimator of the conditional quantile when the data are supposed to be selected from an underlying stationary and ergodic process. Then, under some general conditions, the uniform almost-complete convergence rate as well as the asymptotic distribution of the estimator are established. A numerical study, including simulated and real data application, is performed to illustrate the validity and the finite-sample performance of the considered estimator.

Suggested Citation

  • Mohamed Chaouch & Amina Angelika Bouchentouf & Aboubacar Traore & Abbes Rabhi, 2020. "Single functional index quantile regression under general dependence structure," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(3), pages 725-755, July.
  • Handle: RePEc:taf:gnstxx:v:32:y:2020:i:3:p:725-755
    DOI: 10.1080/10485252.2020.1797021
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2020.1797021
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2020.1797021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Hamri Mohamed Mehdi & Mekki SanaĆ  Dounya & Rabhi Abbes & Kadiri Nadia, 2022. "Single Functional Index Quantile Regression for Independent Functional Data Under Right-Censoring," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(1), pages 31-62, March.
    3. Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:32:y:2020:i:3:p:725-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.