IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v24y2019i4d10.1007_s13253-019-00364-4.html
   My bibliography  Save this article

Comparing Coefficients Across Subpopulations in Gaussian Mixture Regression Models

Author

Listed:
  • Shin-Fu Tsai

    (National Taiwan University)

Abstract

When fitting a Gaussian mixture regression model to observed data, estimating a between-group contrast can be a practical issue. One can use the estimate to compare the effects of a particular covariate or a set of covariates across different subpopulations. By applying fiducial generalized pivotal quantities, a small-sample solution is proposed in this paper to obtain interval estimates of between-group contrasts. Specifically, a Markov chain Monte Carlo sampler, which takes the membership uncertainty of each individual into account, is designed to generate realizations from the target distributions for computing the required interval estimates. A plant virus transmission study is first introduced as a motivating example for the present study. Next, the observed data are analyzed to illustrate the proposed method. Based on the simulation results, it is further shown that the proposed method can maintain the empirical coverage rates sufficiently close to the nominal level. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Shin-Fu Tsai, 2019. "Comparing Coefficients Across Subpopulations in Gaussian Mixture Regression Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 610-633, December.
  • Handle: RePEc:spr:jagbes:v:24:y:2019:i:4:d:10.1007_s13253-019-00364-4
    DOI: 10.1007/s13253-019-00364-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-019-00364-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-019-00364-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Hannig & Hari Iyer & Randy C. S. Lai & Thomas C. M. Lee, 2016. "Generalized Fiducial Inference: A Review and New Results," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1346-1361, July.
    2. Koschat, Martin A & Weerahandi, Samaradasa, 1992. "Chow-Type Tests under Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 221-228, April.
    3. T. Rolf Turner, 2000. "Estimating the propagation rate of a viral infection of potato plants via mixtures of regressions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 371-384.
    4. Seock-Ho Kim & Allan S. Cohen, 1998. "On the Behrens-Fisher Problem: A Review," Journal of Educational and Behavioral Statistics, , vol. 23(4), pages 356-377, December.
    5. Jan Hannig & Thomas C. M. Lee, 2009. "Generalized fiducial inference for wavelet regression," Biometrika, Biometrika Trust, vol. 96(4), pages 847-860.
    6. Li, Xinmin, 2009. "A generalized p-value approach for comparing the means of several log-normal populations," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1404-1408, June.
    7. Hannig, Jan & Iyer, Hari & Patterson, Paul, 2006. "Fiducial Generalized Confidence Intervals," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 254-269, March.
    8. Shin-Fu Tsai, 2014. "A generalized test variable approach for grain yield comparisons of rice," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2627-2638, December.
    9. Lanqing Hong & Zhi-Sheng Ye & Ran Ling, 2018. "Environmental Risk Assessment of Emerging Contaminants Using Degradation Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 390-409, September.
    10. Hsin-I Lee & Hungyen Chen & Hirohisa Kishino & Chen-Tuo Liao, 2016. "A Reference Population-Based Conformance Proportion," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 684-697, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin‐Fu Tsai, 2020. "Approximate two‐sided tolerance intervals for normal mixture distributions," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 367-382, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsin-I Lee & Hungyen Chen & Hirohisa Kishino & Chen-Tuo Liao, 2016. "A Reference Population-Based Conformance Proportion," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 684-697, December.
    2. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    3. Li, Xinmin & Wang, Juan & Liang, Hua, 2011. "Comparison of several means: A fiducial based approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1993-2002, May.
    4. Russell J. Bowater, 2017. "A defence of subjective fiducial inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 177-197, April.
    5. Piero Veronese & Eugenio Melilli, 2021. "Confidence Distribution for the Ability Parameter of the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 131-166, March.
    6. Hannig, Jan & Lai, Randy C.S. & Lee, Thomas C.M., 2014. "Computational issues of generalized fiducial inference," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 849-858.
    7. Veronese, Piero & Melilli, Eugenio, 2018. "Some asymptotic results for fiducial and confidence distributions," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 98-105.
    8. Weizhong Tian & Yaoting Yang & Tingting Tong, 2022. "Confidence Intervals Based on the Difference of Medians for Independent Log-Normal Distributions," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    9. Piao Chen & Zhi‐Sheng Ye & Xun Xiao, 2019. "Pairwise model discrimination with applications in lifetime distributions and degradation processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 675-686, December.
    10. Theerapong Kaewprasert & Sa-Aat Niwitpong & Suparat Niwitpong, 2022. "Simultaneous Confidence Intervals for the Ratios of the Means of Zero-Inflated Gamma Distributions and Its Application," Mathematics, MDPI, vol. 10(24), pages 1-22, December.
    11. Seungyong Hwang & Randy C. S. Lai & Thomas C. M. Lee, 2022. "Generalized Fiducial Inference for Threshold Estimation in Dose–Response and Regression Settings," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 109-124, March.
    12. David R. Bickel, 2014. "Small-scale Inference: Empirical Bayes and Confidence Methods for as Few as a Single Comparison," International Statistical Review, International Statistical Institute, vol. 82(3), pages 457-476, December.
    13. Sadooghi-Alvandi, S.M. & Malekzadeh, A., 2014. "Simultaneous confidence intervals for ratios of means of several lognormal distributions: A parametric bootstrap approach," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 133-140.
    14. Ionut Bebu & George Luta & Thomas Mathew & Brian K. Agan, 2016. "Generalized Confidence Intervals and Fiducial Intervals for Some Epidemiological Measures," IJERPH, MDPI, vol. 13(6), pages 1-13, June.
    15. Wu, Suofei & Hannig, Jan & Lee, Thomas C.M., 2022. "Uncertainty quantification for honest regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    16. Xiong, Shifeng, 2011. "An asymptotics look at the generalized inference," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 336-348, February.
    17. Yongku Kim & Woo Dong Lee & Sang Gil Kang, 2020. "A matching prior based on the modified profile likelihood for the common mean in multiple log-normal distributions," Statistical Papers, Springer, vol. 61(2), pages 543-573, April.
    18. Li, Xinmin & Zhou, Xiaohua & Tian, Lili, 2013. "Interval estimation for the mean of lognormal data with excess zeros," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2447-2453.
    19. Gianfranco DI VAIO & Michele BATTISTI, 2010. "A Spatially-Filtered Mixture of Beta-Convergence Regression for EU Regions, 1980-2002," Regional and Urban Modeling 284100013, EcoMod.
    20. Roy, Anindya & Bose, Arup, 2009. "Coverage of generalized confidence intervals," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1384-1397, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:24:y:2019:i:4:d:10.1007_s13253-019-00364-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.