IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v86y2024i1d10.1007_s13171-023-00323-9.html
   My bibliography  Save this article

A Possibility-Theoretic Solution to Basu’s Bayesian–Frequentist Via Media

Author

Listed:
  • Ryan Martin

    (North Carolina State University)

Abstract

Basu’s via media is what he referred to as the middle road between the Bayesian and frequentist poles. He seemed skeptical that a suitable via media could be found, but I disagree. My basic claim is that the likelihood alone can’t reliably support probabilistic inference, and I justify this by considering a technical trap that Basu stepped in concerning interpretation of the likelihood. While reliable probabilistic inference is out of reach, it turns out that reliable possibilistic inference is not. I lay out my proposed possibility-theoretic solution to Basu’s via media and I investigate how the flexibility afforded by my imprecise-probabilistic solution can be leveraged to achieve the likelihood principle (or something close to it).

Suggested Citation

  • Ryan Martin, 2024. "A Possibility-Theoretic Solution to Basu’s Bayesian–Frequentist Via Media," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 43-70, November.
  • Handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-023-00323-9
    DOI: 10.1007/s13171-023-00323-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-023-00323-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-023-00323-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubois, Didier, 2006. "Possibility theory and statistical reasoning," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 47-69, November.
    2. Ryan Martin & Chuanhai Liu, 2013. "Inferential Models: A Framework for Prior-Free Posterior Probabilistic Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 301-313, March.
    3. Jan Hannig & Hari Iyer & Randy C. S. Lai & Thomas C. M. Lee, 2016. "Generalized Fiducial Inference: A Review and New Results," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1346-1361, July.
    4. Jan Hannig & Thomas C. M. Lee, 2009. "Generalized fiducial inference for wavelet regression," Biometrika, Biometrika Trust, vol. 96(4), pages 847-860.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piero Veronese & Eugenio Melilli, 2021. "Confidence Distribution for the Ability Parameter of the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 131-166, March.
    2. Veronese, Piero & Melilli, Eugenio, 2018. "Some asymptotic results for fiducial and confidence distributions," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 98-105.
    3. Hsin-I Lee & Hungyen Chen & Hirohisa Kishino & Chen-Tuo Liao, 2016. "A Reference Population-Based Conformance Proportion," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 684-697, December.
    4. Eugenio Melilli & Piero Veronese, 2024. "Confidence distributions and hypothesis testing," Statistical Papers, Springer, vol. 65(6), pages 3789-3820, August.
    5. Shin-Fu Tsai, 2019. "Comparing Coefficients Across Subpopulations in Gaussian Mixture Regression Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 610-633, December.
    6. Seungyong Hwang & Randy C. S. Lai & Thomas C. M. Lee, 2022. "Generalized Fiducial Inference for Threshold Estimation in Dose–Response and Regression Settings," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 109-124, March.
    7. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    8. Ionut Bebu & George Luta & Thomas Mathew & Brian K. Agan, 2016. "Generalized Confidence Intervals and Fiducial Intervals for Some Epidemiological Measures," IJERPH, MDPI, vol. 13(6), pages 1-13, June.
    9. Wu, Suofei & Hannig, Jan & Lee, Thomas C.M., 2022. "Uncertainty quantification for honest regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    10. Piero Veronese & Eugenio Melilli, 2015. "Fiducial and Confidence Distributions for Real Exponential Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 471-484, June.
    11. Michael P. Fay & Michael A. Proschan & Erica Brittain, 2015. "Combining one-sample confidence procedures for inference in the two-sample case," Biometrics, The International Biometric Society, vol. 71(1), pages 146-156, March.
    12. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    13. David R. Bickel, 2024. "Bayesian and frequentist inference derived from the maximum entropy principle with applications to propagating uncertainty about statistical methods," Statistical Papers, Springer, vol. 65(8), pages 5389-5407, October.
    14. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    15. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    16. Li, Xinmin & Wang, Juan & Liang, Hua, 2011. "Comparison of several means: A fiducial based approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1993-2002, May.
    17. Hussein Khraibani & Bilal Nehme & Olivier Strauss, 2018. "Interval Estimation of Value-at-Risk Based on Nonparametric Models," Econometrics, MDPI, vol. 6(4), pages 1-30, December.
    18. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    19. Russell J. Bowater, 2017. "A defence of subjective fiducial inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 177-197, April.
    20. Gia Sirbiladze & Irina Khutsishvili & Otar Badagadze & Mikheil Kapanadze, 2016. "More Precise Decision-Making Methodology in the Temporalized Body of Evidence. Application in the Information Technology Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1469-1502, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-023-00323-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.