IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i12p2627-2638.html
   My bibliography  Save this article

A generalized test variable approach for grain yield comparisons of rice

Author

Listed:
  • Shin-Fu Tsai

Abstract

Traditionally, an assessment for grain yield of rice is to split it into the yield components, including the number of panicles per plant, the number of spikelets per panicle, the 1000-grain weight and the filled-spikelet percentage, such that the yield performance can be individually evaluated through each component, and the products of yield components are employed for grain yield comparisons. However, when using the standard statistical methods, such as the two-sample t -test and analysis of variance, the assumptions of normality and variance homogeneity cannot be fully justified for comparing the grain yields, leading to that the empirical sizes cannot be adequately controlled. In this study, based on the concepts of generalized test variables and generalized p -values, a novel statistical testing procedure is developed for grain yield comparisons of rice. The proposed method is assessed by a series of numerical simulations. According to the simulation results, the proposed method performs reasonably well in Type I error control and empirical power. In addition, a real-life field experiment is analyzed by the proposed method, some productive rice varieties are screened out and suggested for a follow-up investigation.

Suggested Citation

  • Shin-Fu Tsai, 2014. "A generalized test variable approach for grain yield comparisons of rice," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2627-2638, December.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2627-2638
    DOI: 10.1080/02664763.2014.922169
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.922169
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.922169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin-Fu Tsai, 2019. "Comparing Coefficients Across Subpopulations in Gaussian Mixture Regression Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 610-633, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2627-2638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.