IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v66y2019i8p675-686.html
   My bibliography  Save this article

Pairwise model discrimination with applications in lifetime distributions and degradation processes

Author

Listed:
  • Piao Chen
  • Zhi‐Sheng Ye
  • Xun Xiao

Abstract

Reliability data obtained from life tests and degradation tests have been extensively used for purposes such as estimating product reliability and predicting warranty costs. When there is more than one candidate model, an important task is to discriminate between the models. In the literature, the model discrimination was often treated as a hypothesis test and a pairwise model discrimination procedure was carried out. Because the null distribution of the test statistic is unavailable in most cases, the large sample approximation and the bootstrap were frequently used to find the acceptance region of the test. Although these two methods are asymptotically accurate, their performance in terms of size and power is not satisfactory in small sample size. To enhance the small‐sample performance, we propose a new method to approximate the null distribution, which builds on the idea of generalized pivots. Conventionally, the generalized pivots were often used for interval estimation of a certain parameter or function of parameters in presence of nuisance parameters. In this study, we further extend the idea of generalized pivots to find the acceptance region of the model discrimination test. Through extensive simulations, we show that the proposed method performs better than the existing methods in discriminating between two lifetime distributions or two degradation models over a wide range of sample sizes. Two real examples are used to illustrate the proposed methods.

Suggested Citation

  • Piao Chen & Zhi‐Sheng Ye & Xun Xiao, 2019. "Pairwise model discrimination with applications in lifetime distributions and degradation processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 675-686, December.
  • Handle: RePEc:wly:navres:v:66:y:2019:i:8:p:675-686
    DOI: 10.1002/nav.21875
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21875
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susanne M. Schennach & Daniel Wilhelm, 2017. "A Simple Parametric Model Selection Test," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1663-1674, October.
    2. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    3. Jan Hannig & Hari Iyer & Randy C. S. Lai & Thomas C. M. Lee, 2016. "Generalized Fiducial Inference: A Review and New Results," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1346-1361, July.
    4. Hannig, Jan & Iyer, Hari & Patterson, Paul, 2006. "Fiducial Generalized Confidence Intervals," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 254-269, March.
    5. Philip L.H. Yu & Thomas Mathew & Yuanyuan Zhu, 2017. "A generalized pivotal quantity approach to portfolio selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1402-1420, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Xiao & Kunxiang Yi & Gang Kou & Liudong Xing, 2020. "Reliability of a two‐dimensional demand‐based networked system with multistate components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 453-468, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
    2. Zhipeng Liao & Xiaoxia Shi, 2020. "A nondegenerate Vuong test and post selection confidence intervals for semi/nonparametric models," Quantitative Economics, Econometric Society, vol. 11(3), pages 983-1017, July.
    3. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024. "Inference on Winners," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
    4. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    5. Gonzalo, Jesús & Pitarakis, Jean-Yves, 2024. "Out-of-sample predictability in predictive regressions with many predictor candidates," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1166-1178.
    6. Xiaoxia Shi, 2015. "A nondegenerate Vuong test," Quantitative Economics, Econometric Society, vol. 6(1), pages 85-121, March.
    7. de Castro, Luciano & Galvao, Antonio F. & Noussair, Charles N. & Qiao, Liang, 2022. "Do people maximize quantiles?," Games and Economic Behavior, Elsevier, vol. 132(C), pages 22-40.
    8. Hsin-I Lee & Hungyen Chen & Hirohisa Kishino & Chen-Tuo Liao, 2016. "A Reference Population-Based Conformance Proportion," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 684-697, December.
    9. Beggs, Alan, 2021. "Games with second-order expected utility," Games and Economic Behavior, Elsevier, vol. 130(C), pages 569-590.
    10. Patrick Gagliardini & Diego Ronchetti, 2020. "Comparing Asset Pricing Models by the Conditional Hansen-Jagannathan Distance," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 333-394.
    11. Andrews, Isaiah & Kitagawa, Toru & McCloskey, Adam, 2021. "Inference after estimation of breaks," Journal of Econometrics, Elsevier, vol. 224(1), pages 39-59.
    12. Koriyama, Yukio & Ozkes, Ali I., 2021. "Inclusive cognitive hierarchy," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 458-480.
    13. Francesco Bravo, 2022. "Misspecified semiparametric model selection with weakly dependent observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 558-586, July.
    14. Matthew Backus & Christopher Conlon & Michael Sinkinson, 2021. "Common Ownership and Competition in the Ready-to-Eat Cereal Industry," NBER Working Papers 28350, National Bureau of Economic Research, Inc.
    15. Shin-Fu Tsai, 2019. "Comparing Coefficients Across Subpopulations in Gaussian Mixture Regression Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 610-633, December.
    16. Jean-Yves Pitarakis, 2020. "A Novel Approach to Predictive Accuracy Testing in Nested Environments," Papers 2008.08387, arXiv.org, revised Oct 2023.
    17. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
    18. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    19. Senay Sokullu & Christine Valente, 2022. "Individual consumption in collective households: Identification using repeated observations with an application to PROGRESA," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 286-304, March.
    20. Yu‐Chin Hsu & Xiaoxia Shi, 2017. "Model‐selection tests for conditional moment restriction models," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 52-85, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:66:y:2019:i:8:p:675-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.