IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i11p1404-1408.html
   My bibliography  Save this article

A generalized p-value approach for comparing the means of several log-normal populations

Author

Listed:
  • Li, Xinmin

Abstract

For the problem of comparing the means of several log-normal populations, a novel approach based on a generalized p-value is given. The merits of the proposed method are numerically compared with the existing method with respect to their sizes and powers under different scenarios. The simulation results demonstrate that the proposed approach can perform hypothesis testing with satisfactory sizes.

Suggested Citation

  • Li, Xinmin, 2009. "A generalized p-value approach for comparing the means of several log-normal populations," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1404-1408, June.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:11:p:1404-1408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00099-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Ramesh C. & Li, Xue, 2006. "Statistical inference for the common mean of two log-normal distributions and some applications in reliability," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3141-3164, July.
    2. Krishnamoorthy, K. & Lu, Fei & Mathew, Thomas, 2007. "A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5731-5742, August.
    3. Jiin-Huarng Guo & Wei-Ming Luh, 2000. "Testing methods for the one-way fixed effects ANOVA models of log-normal samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 731-738.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayanendranath Basu & Abhijit Mandal & Nirian Martín & Leandro Pardo, 2019. "A Robust Wald-Type Test for Testing the Equality of Two Means from Log-Normal Samples," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 85-107, March.
    2. Schaarschmidt, Frank, 2013. "Simultaneous confidence intervals for multiple comparisons among expected values of log-normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 265-275.
    3. Shin-Fu Tsai, 2019. "Comparing Coefficients Across Subpopulations in Gaussian Mixture Regression Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 610-633, December.
    4. Yin, Jingjing & Tian, Lili, 2014. "Joint inference about sensitivity and specificity at the optimal cut-off point associated with Youden index," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 1-13.
    5. Yongku Kim & Woo Dong Lee & Sang Gil Kang, 2020. "A matching prior based on the modified profile likelihood for the common mean in multiple log-normal distributions," Statistical Papers, Springer, vol. 61(2), pages 543-573, April.
    6. Ali Akbar Jafari & Javad Shaabani, 2020. "Comparing scale parameters in several gamma distributions with known shapes," Computational Statistics, Springer, vol. 35(4), pages 1927-1950, December.
    7. Chang, Ming & You, Xuqun & Wen, Muqing, 2012. "Testing the homogeneity of inverse Gaussian scale-like parameters," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1755-1760.
    8. Xu Guo & Hecheng Wu & Gaorong Li & Qiuyue Li, 2017. "Inference for the common mean of several Birnbaum–Saunders populations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 941-954, April.
    9. Sadooghi-Alvandi, S.M. & Malekzadeh, A., 2014. "Simultaneous confidence intervals for ratios of means of several lognormal distributions: A parametric bootstrap approach," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 133-140.
    10. S. Lin, 2013. "The higher order likelihood method for the common mean of several log-normal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 381-392, April.
    11. Li, Xinmin & Tian, Lili & Wang, Juan & Muindi, Josephia R., 2012. "Comparison of quantiles for several normal populations," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2129-2138.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weizhong Tian & Yaoting Yang & Tingting Tong, 2022. "Confidence Intervals Based on the Difference of Medians for Independent Log-Normal Distributions," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    2. Ayanendranath Basu & Abhijit Mandal & Nirian Martín & Leandro Pardo, 2019. "A Robust Wald-Type Test for Testing the Equality of Two Means from Log-Normal Samples," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 85-107, March.
    3. Al-Mutairi, D.K. & Ghitany, M.E. & Gupta, Ramesh C., 2011. "Estimation of reliability in a series system with random sample size," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 964-972, February.
    4. Tobi Kingsley Ochuko & Suhaida Abdullah & Zakiyah Binti Zain & Sharipah Soaad Syed Yahaya, 2015. "The Modification and Evaluation of the Alexander-Govern Test in Terms of Power," Modern Applied Science, Canadian Center of Science and Education, vol. 9(13), pages 1-1, December.
    5. Li, Xinmin & Wang, Juan & Liang, Hua, 2011. "Comparison of several means: A fiducial based approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1993-2002, May.
    6. H. V. Kulkarni & S. M. Patil, 2021. "Uniformly implementable small sample integrated likelihood ratio test for one-way and two-way ANOVA under heteroscedasticity and normality," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 273-305, June.
    7. Jin-Ting Zhang & Xuefeng Liu, 2013. "A modified Bartlett test for heteroscedastic one-way MANOVA," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 135-152, January.
    8. Li, Xinmin & Tian, Lili & Wang, Juan & Muindi, Josephia R., 2012. "Comparison of quantiles for several normal populations," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2129-2138.
    9. Roth, Lucas & Lowitzsch, Jens & Yildiz, Özgür, 2023. "Which (co-)ownership types in renewables are associated with the willingness to adopt energy-efficient technologies and energy-conscious behaviour? Data from German households," Energy Policy, Elsevier, vol. 180(C).
    10. repec:sip:wpaper:12-026 is not listed on IDEAS
    11. Xiong, Shifeng, 2011. "An asymptotics look at the generalized inference," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 336-348, February.
    12. Balakrishnan, N. & Pal, Suvra, 2013. "Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 41-67.
    13. Sumith Gunasekera, 2015. "Generalized inferences of $$R$$ R = $$\Pr (X>Y)$$ Pr ( X > Y ) for Pareto distribution," Statistical Papers, Springer, vol. 56(2), pages 333-351, May.
    14. S. Lin, 2013. "The higher order likelihood method for the common mean of several log-normal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 381-392, April.
    15. Julia Volaufova, 2009. "Heteroscedastic ANOVA: old p values, new views," Statistical Papers, Springer, vol. 50(4), pages 943-962, August.
    16. Lili Yue & Jianhong Shi & Jingxuan Luo & Jinguan Lin, 2023. "A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors," Mathematics, MDPI, vol. 11(19), pages 1-13, October.
    17. Tobi Kingsley Ochuko & Suhaida Abdullah & Zakiyah Binti Zain & Sharipah Syed Soaad Yahaya, 2015. "Modifying and Evaluating the Alexander-Govern Test Using Real Data," Modern Applied Science, Canadian Center of Science and Education, vol. 9(12), pages 1-1, November.
    18. A. Malekzadeh & M. Kharrati-Kopaei & S. Sadooghi-Alvandi, 2014. "Comparing exponential location parameters with several controls under heteroscedasticity," Computational Statistics, Springer, vol. 29(5), pages 1083-1094, October.
    19. Xu, Li-Wen & Yang, Fang-Qin & Abula, Aji’erguli & Qin, Shuang, 2013. "A parametric bootstrap approach for two-way ANOVA in presence of possible interactions with unequal variances," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 172-180.
    20. Tobi Kingsley Ochuko & Suhaida Abdullah & Zakiyah Binti Zain & Sharipah Soaad Syed Yahaya, 2015. "Winsorized Modified One Step M-estimator in Alexander-Govern Test," Modern Applied Science, Canadian Center of Science and Education, vol. 9(11), pages 1-51, October.
    21. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2018. "Semiparametric inference on the means of multiple nonnegative distributions with excess zero observations," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 182-197.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:11:p:1404-1408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.