IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v21y2016i3d10.1007_s13253-016-0258-1.html
   My bibliography  Save this article

Testing Self-Similarity Through Lamperti Transformations

Author

Listed:
  • Myoungji Lee

    (Texas A&M University)

  • Marc G. Genton

    (King Abdullah University of Science and Technology)

  • Mikyoung Jun

    (Texas A&M University)

Abstract

Self-similar processes have been widely used in modeling real-world phenomena occurring in environmetrics, network traffic, image processing, and stock pricing, to name but a few. The estimation of the degree of self-similarity has been studied extensively, while statistical tests for self-similarity are scarce and limited to processes indexed in one dimension. This paper proposes a statistical hypothesis test procedure for self-similarity of a stochastic process indexed in one dimension and multi-self-similarity for a random field indexed in higher dimensions. If self-similarity is not rejected, our test provides a set of estimated self-similarity indexes. The key is to test stationarity of the inverse Lamperti transformations of the process. The inverse Lamperti transformation of a self-similar process is a strongly stationary process, revealing a theoretical connection between the two processes. To demonstrate the capability of our test, we test self-similarity of fractional Brownian motions and sheets, their time deformations and mixtures with Gaussian white noise, and the generalized Cauchy family. We also apply the self-similarity test to real data: annual minimum water levels of the Nile River, network traffic records, and surface heights of food wrappings.

Suggested Citation

  • Myoungji Lee & Marc G. Genton & Mikyoung Jun, 2016. "Testing Self-Similarity Through Lamperti Transformations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 426-447, September.
  • Handle: RePEc:spr:jagbes:v:21:y:2016:i:3:d:10.1007_s13253-016-0258-1
    DOI: 10.1007/s13253-016-0258-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-016-0258-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-016-0258-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & Wolfgang Härdle & Torsten Kleinow & Peter Schmidt, 2000. "Semiparametric Bootstrap Approach to Hypothesis Tests and Confidence Intervals for the Hurst Coefficient," Statistical Inference for Stochastic Processes, Springer, vol. 3(3), pages 263-276, October.
    2. Fuentes, Montserrat, 2005. "A formal test for nonstationarity of spatial stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 30-54, September.
    3. Suhasini Subba Rao, 2008. "Statistical analysis of a spatio‐temporal model with location‐dependent parameters and a test for spatial stationarity," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(4), pages 673-694, July.
    4. Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
    5. S. Davies & P. Hall, 1999. "Fractal analysis of surface roughness by using spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 3-37.
    6. Li, Ming & Zhao, Wei, 2012. "Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6268-6278.
    7. Bianchi, Sergio, 2004. "A new distribution-based test of self-similarity," MPRA Paper 16640, University Library of Munich, Germany.
    8. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    9. Yogesh Dwivedi & Suhasini Subba Rao, 2011. "A test for second‐order stationarity of a time series based on the discrete Fourier transform," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 68-91, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Garcin, 2019. "Estimation of Hurst exponents in a stationary framework [Estimation d'exposants de Hurst dans un cadre stationnaire]," Post-Print hal-02163662, HAL.
    2. Matthieu Garcin, 2019. "Hurst Exponents And Delampertized Fractional Brownian Motions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-26, August.
    3. J. Mateu & E. Porcu, 2016. "Guest Editors’ Introduction to the Special Issue on “Seismomatics: Space–Time Analysis of Natural or Anthropogenic Catastrophes”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 403-406, September.
    4. Matthieu Garcin, 2018. "Hurst exponents and delampertized fractional Brownian motions," Working Papers hal-01919754, HAL.
    5. Yoshihiro Yajima & Yasumasa Matsuda, 2023. "Gaussian semiparametric estimation Gaussian semiparametric estimation of two-dimensional intrinsically stationary random fields," DSSR Discussion Papers 136, Graduate School of Economics and Management, Tohoku University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soutir Bandyopadhyay & Suhasini Subba Rao, 2017. "A test for stationarity for irregularly spaced spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 95-123, January.
    2. Tata Subba Rao & Granville Tunnicliffe Wilson & Soutir Bandyopadhyay & Carsten Jentsch & Suhasini Subba Rao, 2017. "A Spectral Domain Test for Stationarity of Spatio-Temporal Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 326-351, March.
    3. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    4. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    5. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    6. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    8. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    9. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    10. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    11. Sun, Ying & Chang, Xiaohui & Guan, Yongtao, 2018. "Flexible and efficient estimating equations for variogram estimation," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 45-58.
    12. Josep Lluís Carrion-i-Silvestre & Andreu Sansó, 2023. ""Generalized Extreme Value Approximation to the CUMSUMQ Test for Constant Unconditional Variance in Heavy-Tailed Time Series"," IREA Working Papers 202309, University of Barcelona, Research Institute of Applied Economics, revised Jul 2023.
    13. Clark, Andrew, 2022. "Causality in the aluminum market," Journal of Commodity Markets, Elsevier, vol. 27(C).
    14. Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
    15. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    16. Francq, Christian & Zakoïan, Jean-Michel, 2022. "Testing the existence of moments for GARCH processes," Journal of Econometrics, Elsevier, vol. 227(1), pages 47-64.
    17. Gneiting, Tilmann, 2002. "Compactly Supported Correlation Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 493-508, November.
    18. Lim, S.C. & Teo, L.P., 2009. "Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1325-1356, April.
    19. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    20. Hong, Yiping & Zhou, Zaiying & Yang, Ying, 2020. "Hypothesis testing for the smoothness parameter of Matérn covariance model on a regular grid," Journal of Multivariate Analysis, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:21:y:2016:i:3:d:10.1007_s13253-016-0258-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.