IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v152y2021ics1366554521001393.html
   My bibliography  Save this article

A robust integrated logistics model for age-based multi-group platelets in disaster relief operations

Author

Listed:
  • Kamyabniya, Afshin
  • Noormohammadzadeh, Zohre
  • Sauré, Antoine
  • Patrick, Jonathan

Abstract

In Disaster Relief Operations (DRO), very often a lack of integration of the blood supply chain results in increased costs and higher blood shortage levels. This paper proposes a fully integrated logistics network that allows blood regional units, hospitals, and temporary emergency shelters to share multi-type platelets in both horizontal and vertical manner. This model not only allocates multi-type platelets to patients according to ABO/Rh(d)-compatible blood substitutions but also considers a three-layer logistics network for platelets that accounts for the impact of the age of the platelets on the suitability for different types of injuries. To efficiently solve the model and generate a Pareto front for large-scale instances of the problem, and multiple scenarios, we employ Lagrangian relaxation and the augmented ε-constraint method. Finally, to evaluate the performance of the proposed solution approach and derive practical insights, we apply it to a case study based on data about a possible earthquake in Tehran, Iran, and conduct some sensitivity analysis.

Suggested Citation

  • Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:transe:v:152:y:2021:i:c:s1366554521001393
    DOI: 10.1016/j.tre.2021.102371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521001393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    2. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    3. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    4. Richard Toner & Laura Pizzi & Brian Leas & Samir Ballas & Alyson Quigley & Neil Goldfarb, 2011. "Costs to hospitals of acquiring and processing blood in the US," Applied Health Economics and Health Policy, Springer, vol. 9(1), pages 29-37, January.
    5. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    6. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    7. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    8. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    9. Tao Lei & Weiwei Tan & Guangsi Chen & Delin Kong, 2018. "A Novel Robust Model Predictive Controller for Aerospace Three-Phase PWM Rectifiers," Energies, MDPI, vol. 11(9), pages 1-22, September.
    10. Dilupa Nakandala & Henry Lau & Paul K.C. Shum, 2017. "A lateral transshipment model for perishable inventory management," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5341-5354, September.
    11. Mohamadreza Fazli-Khalaf & Soheyl Khalilpourazari & Mohammad Mohammadi, 2019. "Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design," Annals of Operations Research, Springer, vol. 283(1), pages 1079-1109, December.
    12. Afshar, Abbas & Haghani, Ali, 2012. "Modeling integrated supply chain logistics in real-time large-scale disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 327-338.
    13. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    14. Fahimnia, Behnam & Jabbarzadeh, Armin & Ghavamifar, Ali & Bell, Michael, 2017. "Supply chain design for efficient and effective blood supply in disasters," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 700-709.
    15. Dehghani, Maryam & Abbasi, Babak, 2018. "An age-based lateral-transshipment policy for perishable items," International Journal of Production Economics, Elsevier, vol. 198(C), pages 93-103.
    16. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    17. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    18. Meissner, Joern & Senicheva, Olga V., 2018. "Approximate dynamic programming for lateral transshipment problems in multi-location inventory systems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 49-64.
    19. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Location and capacity allocations decisions to mitigate the impacts of unexpected disasters," European Journal of Operational Research, Elsevier, vol. 251(1), pages 252-263.
    20. Edrissi, Ali & Poorzahedy, Hossain & Nassiri, Habibollah & Nourinejad, Mehdi, 2013. "A multi-agent optimization formulation of earthquake disaster prevention and management," European Journal of Operational Research, Elsevier, vol. 229(1), pages 261-275.
    21. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    22. David D. Yao & Sean X. Zhou & Weifen Zhuang, 2016. "Joint Initial Stocking and Transshipment—Asymptotics and Bounds," Production and Operations Management, Production and Operations Management Society, vol. 25(2), pages 273-289, February.
    23. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    24. Anna Nagurney & Amir Masoumi & Min Yu, 2012. "Supply chain network operations management of a blood banking system with cost and risk minimization," Computational Management Science, Springer, vol. 9(2), pages 205-231, May.
    25. Dean, Matthew D. & Nair, Suresh K., 2014. "Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model," European Journal of Operational Research, Elsevier, vol. 238(1), pages 363-373.
    26. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    27. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    28. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    29. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02312250, HAL.
    30. Masoumi, Amir H. & Yu, Min & Nagurney, Anna, 2017. "Mergers and acquisitions in blood banking systems: A supply chain network approach," International Journal of Production Economics, Elsevier, vol. 193(C), pages 406-421.
    31. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    32. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    33. Wang, Ke-Ming & Ma, Zu-Jun, 2015. "Age-based policy for blood transshipment during blood shortage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 166-183.
    34. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    35. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    36. Osorio, Andres F. & Brailsford, Sally C. & Smith, Honora K., 2018. "Whole blood or apheresis donations? A multi-objective stochastic optimization approach," European Journal of Operational Research, Elsevier, vol. 266(1), pages 193-204.
    37. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    38. Seung Jae Park & Guoming Lai & Sridhar Seshadri, 2016. "Inventory Sharing in the Presence of Commodity Markets," Production and Operations Management, Production and Operations Management Society, vol. 25(7), pages 1245-1260, July.
    39. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    40. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    41. Deming Zhou & Lawrence C. Leung & William P. Pierskalla, 2011. "Inventory Management of Platelets in Hospitals: Optimal Inventory Policy for Perishable Products with Regular and Optional Expedited Replenishments," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 420-438, October.
    42. Afshin Kamyabniya & M. M. Lotfi & Hua Cai & Hasan Hosseininasab & Saeed Yaghoubi & Yuehwern Yih, 2019. "A two-phase coordinated logistics planning approach to platelets provision in humanitarian relief operations," IISE Transactions, Taylor & Francis Journals, vol. 51(1), pages 1-21, January.
    43. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    44. Ramezanian, Reza & Behboodi, Zahra, 2017. "Blood supply chain network design under uncertainties in supply and demand considering social aspects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 69-82.
    45. Charbel José Chiappetta Jabbour & Vinicius Amorim Sobreiro & Ana Beatriz Lopes de Sousa Jabbour & Lucila Maria Souza Campos & Enzo Barberio Mariano & Douglas William Scott Renwick, 2019. "An analysis of the literature on humanitarian logistics and supply chain management: paving the way for future studies," Annals of Operations Research, Springer, vol. 283(1), pages 289-307, December.
    46. Ying Rong & Lawrence V. Snyder & Yang Sun, 2010. "Inventory sharing under decentralized preventive transshipments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 540-562, September.
    47. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    48. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    49. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    50. Sukho Jin & Sukjae Jeong & Jangyeop Kim & Kyungsup Kim, 2015. "A logistics model for the transport of disaster victims with various injuries and survival probabilities," Annals of Operations Research, Springer, vol. 230(1), pages 17-33, July.
    51. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    52. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.
    53. Chao Liang & Suresh P. Sethi & Ruixia Shi & Jun Zhang, 2014. "Inventory Sharing with Transshipment: Impacts of Demand Distribution Shapes and Setup Costs," Production and Operations Management, Production and Operations Management Society, vol. 23(10), pages 1779-1794, October.
    54. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manupati, Vijaya Kumar & Schoenherr, Tobias & Wagner, Stephan M. & Soni, Bhanushree & Panigrahi, Suraj & Ramkumar, M., 2021. "Convalescent plasma bank facility location-allocation problem for COVID-19," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    2. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    3. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Gilani Larimi, Niloofar & Yaghoubi, Saeed & Hosseini-Motlagh, Seyyed-Mahdi, 2019. "Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    5. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    6. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    7. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    8. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    9. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    10. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    11. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    12. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    13. Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    14. Sara Cheraghi & Seyyed-Mahdi Hosseini-Motlagh, 2020. "Responsive and reliable injured-oriented blood supply chain for disaster relief: a real case study," Annals of Operations Research, Springer, vol. 291(1), pages 129-167, August.
    15. Esmaeili, Somayeh & Bashiri, Mahdi & Amiri, Amirhossein, 2023. "An exact criterion space search algorithm for a bi-objective blood collection problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 210-232.
    16. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    17. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    18. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.
    19. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    20. Javid Ghahremani-Nahr & Ramez Kian & Ehsan Sabet & Vahid Akbari, 2022. "A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach," Operational Research, Springer, vol. 22(5), pages 4685-4723, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:152:y:2021:i:c:s1366554521001393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.