IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i3p1124-1143.html
   My bibliography  Save this article

An appointment scheduling framework to balance the production of blood units from donation

Author

Listed:
  • Baş, Seda
  • Carello, Giuliana
  • Lanzarone, Ettore
  • Yalçındağ, Semih

Abstract

Blood is fundamental in several care treatments and surgeries, and plays a crucial role in the health care system. It is a limited resource, as it can be produced only by donors and its shelf life is short; thus, the blood donation (BD) system aims at providing adequate supply of blood units to transfusion centers and hospitals. An effective collection of blood units from donors is fundamental for adequately feeding the entire BD system and optimizing blood usage. However, despite its relevance, donation scheduling is only marginally addressed in the literature. In this paper we consider the Blood Donation Appointment Scheduling (BDAS) problem, aiming at balancing the production of the different blood types among days in order to provide a quite constant feeding of blood units to the BD system. We propose a framework for the appointment reservation that accounts for both booked donors and donors arriving without a reservation. It consists of an offline Mixed Integer Linear Programming (MILP) model for preallocating time slots to blood types, and an online prioritization policy to assign a preallocated slot when the donor calls to make the reservation.

Suggested Citation

  • Baş, Seda & Carello, Giuliana & Lanzarone, Ettore & Yalçındağ, Semih, 2018. "An appointment scheduling framework to balance the production of blood units from donation," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1124-1143.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:3:p:1124-1143
    DOI: 10.1016/j.ejor.2017.08.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717307853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.08.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nan Liu, 2016. "Optimal Choice for Appointment Scheduling Window under Patient No-Show Behavior," Production and Operations Management, Production and Operations Management Society, vol. 25(1), pages 128-142, January.
    2. Bjorn Berg & Brian T. Denton, 2012. "Appointment Planning and Scheduling in Outpatient Procedure Centers," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 131-154, Springer.
    3. Yigal Gerchak & Diwakar Gupta & Mordechai Henig, 1996. "Reservation Planning for Elective Surgery Under Uncertain Demand for Emergency Surgery," Management Science, INFORMS, vol. 42(3), pages 321-334, March.
    4. Maartje Zonderland & Richard Boucherie & Nelly Litvak & Carmen Vleggeert-Lankamp, 2010. "Planning and scheduling of semi-urgent surgeries," Health Care Management Science, Springer, vol. 13(3), pages 256-267, September.
    5. Belií«n, Jeroen & Demeulemeester, Erik, 2008. "A branch-and-price approach for integrating nurse and surgery scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 652-668, September.
    6. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    7. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    8. Edgar Alfonso & Xiaolan Xie & Vincent Augusto & Olivier Garraud, 2012. "Modeling and simulation of blood collection systems," Health Care Management Science, Springer, vol. 15(1), pages 63-78, March.
    9. Randolph Hall, 2012. "Bed Assignment and Bed Management," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 177-200, Springer.
    10. Diwakar Gupta & Wen-Ya Wang, 2012. "Patient Appointments in Ambulatory Care," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 65-104, Springer.
    11. Framinan, Jose M. & Ruiz, Rubén, 2010. "Architecture of manufacturing scheduling systems: Literature review and an integrated proposal," European Journal of Operational Research, Elsevier, vol. 205(2), pages 237-246, September.
    12. Nan Liu & Serhan Ziya, 2014. "Panel Size and Overbooking Decisions for Appointment-Based Services under Patient No-Shows," Production and Operations Management, Production and Operations Management Society, vol. 23(12), pages 2209-2223, December.
    13. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    14. Erwin W. Hans & Peter T. Vanberkel, 2012. "Operating Theatre Planning and Scheduling," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 105-130, Springer.
    15. Şahinyazan, Feyza Güliz & Kara, Bahar Y. & Taner, Mehmet Rüştü, 2015. "Selective vehicle routing for a mobile blood donation system," European Journal of Operational Research, Elsevier, vol. 245(1), pages 22-34.
    16. Samorani, Michele & LaGanga, Linda R., 2015. "Outpatient appointment scheduling given individual day-dependent no-show predictions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 245-257.
    17. Jonsson, Patrik & Kjellsdotter Ivert, Linea, 2015. "Improving performance with sophisticated master production scheduling," International Journal of Production Economics, Elsevier, vol. 168(C), pages 118-130.
    18. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    19. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    20. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Semih Yalçındağ & Seda Baş Güre & Giuliana Carello & Ettore Lanzarone, 2020. "A stochastic risk-averse framework for blood donation appointment scheduling under uncertain donor arrivals," Health Care Management Science, Springer, vol. 23(4), pages 535-555, December.
    2. Christian Kauten & Ashish Gupta & Xiao Qin & Glenn Richey, 2022. "Predicting Blood Donors Using Machine Learning Techniques," Information Systems Frontiers, Springer, vol. 24(5), pages 1547-1562, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    3. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.
    4. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    5. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    6. Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    7. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    8. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    9. Yong-Hong Kuo & Hari Balasubramanian & Yan Chen, 2020. "Medical appointment overbooking and optimal scheduling: tradeoffs between schedule efficiency and accessibility to service," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 72-101, March.
    10. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    11. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
    12. Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
    13. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    14. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    15. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    16. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
    17. Long Gao & Jim (Junmin) Shi & Michael F. Gorman & Ting Luo, 2020. "Business Analytics for Intermodal Capacity Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 310-329, March.
    18. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    19. Jiang, Yangzi & Abouee-Mehrizi, Hossein & Diao, Yuhe, 2020. "Data-driven analytics to support scheduling of multi-priority multi-class patients with wait time targets," European Journal of Operational Research, Elsevier, vol. 281(3), pages 597-611.
    20. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:3:p:1124-1143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.