IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v36y2024i4d10.1007_s10696-023-09518-6.html
   My bibliography  Save this article

A three-stage matheuristic for home blood donation appointment reservation and collection routing

Author

Listed:
  • Martina Doneda

    (Politecnico di Milano
    National Research Council of Italy)

  • Semih Yalçındağ

    (Yeditepe University)

  • Ettore Lanzarone

    (University of Bergamo)

Abstract

In Western countries, the so-called Blood Donation Supply Chain (BDSC) provides blood units to several health services. Its first echelon is the collection of unit from donors, which requires a careful management because an unbalanced supply of units to the rest of the chain could trigger alternating periods of blood shortage and wastage. However, the management of blood collection is only marginally studied in the literature, in comparison to other BDSC echelons. In this work, we propose a new organizational model for blood collection, in which blood is collected at donor’s homes, and provide a decision support tool for its management. This new model provides a novel contribution to the understudied blood collection echelon and, at the same time, it responds to the emerging need of delocalization of health services. The proposed decision support tool consists of an interconnected matheuristic framework with three decision stages: (i) a planning model to create the donation slots that will be assigned to donors, (ii) an online allocation of these slots using a flexible set of criteria, and (iii) a Multi-Trip Vehicle Routing Problem with Time Windows (MTVRP-TW) to route the bloodmobiles that collect blood at donors’ homes. The main goals are to balance the production of blood units between days and to minimize the distance travelled by the bloodmobile fleet, while respecting time windows negotiated with donors. This framework also has the feature of immediately providing a list of slots to choose from when a donor makes a booking request. The decision support tool has been tested on data from a real Italian provider. Results confirm its effectiveness, and the capability of providing good quality and economically sustainable solutions in reasonable timeframes.

Suggested Citation

  • Martina Doneda & Semih Yalçındağ & Ettore Lanzarone, 2024. "A three-stage matheuristic for home blood donation appointment reservation and collection routing," Flexible Services and Manufacturing Journal, Springer, vol. 36(4), pages 1222-1252, December.
  • Handle: RePEc:spr:flsman:v:36:y:2024:i:4:d:10.1007_s10696-023-09518-6
    DOI: 10.1007/s10696-023-09518-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-023-09518-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-023-09518-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coelho, Leandro C. & Laporte, Gilbert, 2014. "Improved solutions for inventory-routing problems through valid inequalities and input ordering," International Journal of Production Economics, Elsevier, vol. 155(C), pages 391-397.
    2. Fabiola Regis-Hernández & Giuliana Carello & Ettore Lanzarone, 2020. "An optimization tool to dimension innovative home health care services with devices and disposable materials," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 561-598, September.
    3. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    4. Edgar Alfonso & Xiaolan Xie & Vincent Augusto & Olivier Garraud, 2012. "Modeling and simulation of blood collection systems," Health Care Management Science, Springer, vol. 15(1), pages 63-78, March.
    5. Baş, Seda & Carello, Giuliana & Lanzarone, Ettore & Yalçındağ, Semih, 2018. "An appointment scheduling framework to balance the production of blood units from donation," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1124-1143.
    6. Şahinyazan, Feyza Güliz & Kara, Bahar Y. & Taner, Mehmet Rüştü, 2015. "Selective vehicle routing for a mobile blood donation system," European Journal of Operational Research, Elsevier, vol. 245(1), pages 22-34.
    7. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    8. Semih Yalçındağ & Seda Baş Güre & Giuliana Carello & Ettore Lanzarone, 2020. "A stochastic risk-averse framework for blood donation appointment scheduling under uncertain donor arrivals," Health Care Management Science, Springer, vol. 23(4), pages 535-555, December.
    9. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baş, Seda & Carello, Giuliana & Lanzarone, Ettore & Yalçındağ, Semih, 2018. "An appointment scheduling framework to balance the production of blood units from donation," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1124-1143.
    2. Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    3. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    4. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
    5. Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
    6. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    7. Semih Yalçındağ & Seda Baş Güre & Giuliana Carello & Ettore Lanzarone, 2020. "A stochastic risk-averse framework for blood donation appointment scheduling under uncertain donor arrivals," Health Care Management Science, Springer, vol. 23(4), pages 535-555, December.
    8. Christian Kauten & Ashish Gupta & Xiao Qin & Glenn Richey, 2022. "Predicting Blood Donors Using Machine Learning Techniques," Information Systems Frontiers, Springer, vol. 24(5), pages 1547-1562, October.
    9. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    10. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    11. Onur Kaya & Dogus Ozkok, 2020. "A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions," Networks and Spatial Economics, Springer, vol. 20(3), pages 757-783, September.
    12. M. Rezaei Kallaj & M. Hasannia Kolaee & S. M. J. Mirzapour Al-e-hashem, 2023. "Integrating bloodmobiles and drones in a post-disaster blood collection problem considering blood groups," Annals of Operations Research, Springer, vol. 321(1), pages 783-811, February.
    13. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    14. Chua, Geoffrey A. & Senga, Juan Ramon L., 2022. "Blood supply interventions during disasters: Efficiency measures and strategies to mitigate volatility," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    15. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    16. Ramezanian, Reza & Behboodi, Zahra, 2017. "Blood supply chain network design under uncertainties in supply and demand considering social aspects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 69-82.
    17. Gilani Larimi, Niloofar & Yaghoubi, Saeed & Hosseini-Motlagh, Seyyed-Mahdi, 2019. "Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    18. Seyyed-Mahdi Hosseini-Motlagh & Niloofar Gilani Larimi & Maryam Oveysi Nejad, 2022. "A qualitative, patient-centered perspective toward plasma products supply chain network design with risk controlling," Operational Research, Springer, vol. 22(1), pages 779-824, March.
    19. Kebing Chen & Jing‐Sheng Song & Jennifer Shang & Tiaojun Xiao, 2022. "Managing hospital platelet inventory with mid‐cycle expedited replenishments and returns," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2015-2037, May.
    20. Soheyl Khalilpourazari & Alireza Arshadi Khamseh, 2019. "Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application," Annals of Operations Research, Springer, vol. 283(1), pages 355-393, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:36:y:2024:i:4:d:10.1007_s10696-023-09518-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.