IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v84y2022ics0038012122001367.html
   My bibliography  Save this article

A multi-period fuzzy optimization strategy for managing a centralized blood supply chain

Author

Listed:
  • Kees, M. Celeste
  • Bandoni, J. Alberto
  • Moreno, M. Susana

Abstract

Blood supply chains (BSCs) are highly complex systems that present many challenges in their optimal management, such as different collection methods, demand and supply uncertainty, blood perishability, blood group distinction, and compatible substitutions. This article presents the study of the critical problem of sizing and managing a centralized version of such BSCs in a developing country. The problem is initially formulated as a multi-period mixed-integer linear programming (MILP) model simultaneously addressing strategic, tactical, and operational decisions over a given time horizon. The formers are related to selecting the technology for blood collection and processing, the tactical ones determine not only where and when donation campaigns are made but also the periodic delivery of surplus plasma for further fractionation, while the operational ones specify the amounts of blood collected, donor allocation to each collection method, and quantities of blood components produced, distributed, and kept in stock daily. The problem aims to minimize three conflictive objective functions: the shortage, the total costs, and the number of substitutions. To appropriately address the multiple goals, their imprecise target values, and the fuzziness in some parameters, the model is reformulated as a fuzzy mixed-integer goal programming (FMIGP) one, which is then solved using a crisp strategy to find a compromise solution. A real-life case study from the public sector of Bahía Blanca city in Argentina shows the advantages of the presented approach. Numerical results demonstrate the integrated model can significatively increase demand satisfaction while reducing costs, less favorable substitutions, and wastes.

Suggested Citation

  • Kees, M. Celeste & Bandoni, J. Alberto & Moreno, M. Susana, 2022. "A multi-period fuzzy optimization strategy for managing a centralized blood supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122001367
    DOI: 10.1016/j.seps.2022.101346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122001367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessia D'Andrea, 2017. "Blood Components as Joint Products: A Literature Review of Cost-Allocation Methods," International Journal of Business and Management, Canadian Center of Science and Education, vol. 12(7), pages 1-46, June.
    2. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    3. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    4. Pereira, Miguel Alves & Marques, Rui Cunha, 2022. "Is sunshine regulation the new prescription to brighten up public hospitals in Portugal?," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    6. Osorio, Andres F. & Brailsford, Sally C. & Smith, Honora K., 2018. "Whole blood or apheresis donations? A multi-objective stochastic optimization approach," European Journal of Operational Research, Elsevier, vol. 266(1), pages 193-204.
    7. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    8. Dillon, Mary & Oliveira, Fabricio & Abbasi, Babak, 2017. "A two-stage stochastic programming model for inventory management in the blood supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 27-41.
    9. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    10. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    11. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahmy, Sherif A. & Zaki, Areej M. & Gaber, Yomna H., 2023. "Optimal locations and flow allocations for aggregation hubs in supply chain networks of perishable products," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meneses, Maria & Santos, Daniel & Barbosa-Póvoa, Ana, 2023. "Modelling the Blood Supply Chain," European Journal of Operational Research, Elsevier, vol. 307(2), pages 499-518.
    2. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    3. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    4. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani & Jeremy Mattson, 2023. "Robust possibilistic programming to design a closed-loop blood supply chain network considering service-level maximization and lateral resupply," Annals of Operations Research, Springer, vol. 328(1), pages 859-901, September.
    5. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Ana Margarida Araújo & Daniel Santos & Inês Marques & Ana Barbosa-Povoa, 2020. "Blood supply chain: a two-stage approach for tactical and operational planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1023-1053, December.
    7. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
    8. Gilani Larimi, Niloofar & Yaghoubi, Saeed & Hosseini-Motlagh, Seyyed-Mahdi, 2019. "Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    9. Yuan Xu & Joseph Szmerekovsky, 2022. "A multi-product multi-period stochastic model for a blood supply chain considering blood substitution and demand uncertainty," Health Care Management Science, Springer, vol. 25(3), pages 441-459, September.
    10. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    11. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    12. Semih Yalçındağ & Seda Baş Güre & Giuliana Carello & Ettore Lanzarone, 2020. "A stochastic risk-averse framework for blood donation appointment scheduling under uncertain donor arrivals," Health Care Management Science, Springer, vol. 23(4), pages 535-555, December.
    13. Nagurney, Anna & Dutta, Pritha, 2019. "Competition for blood donations," Omega, Elsevier, vol. 85(C), pages 103-114.
    14. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    15. van Sambeeck, J.H.J. & van Brummelen, S.P.J. & van Dijk, N.M. & Janssen, M.P., 2022. "Optimal blood issuing by comprehensive matching," European Journal of Operational Research, Elsevier, vol. 296(1), pages 240-253.
    16. Javid Ghahremani-Nahr & Ramez Kian & Ehsan Sabet & Vahid Akbari, 2022. "A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach," Operational Research, Springer, vol. 22(5), pages 4685-4723, November.
    17. Chua, Geoffrey A. & Senga, Juan Ramon L., 2022. "Blood supply interventions during disasters: Efficiency measures and strategies to mitigate volatility," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    18. Kenan, Nabil & Diabat, Ali, 2022. "The supply chain of blood products in the wake of the COVID-19 pandemic: Appointment scheduling and other restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    19. Gilani Larimi, Niloofar & Azhdari, Abolghasem & Ghousi, Rouzbeh & Du, Bo, 2022. "Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    20. Seyyed-Mahdi Hosseini-Motlagh & Niloofar Gilani Larimi & Maryam Oveysi Nejad, 2022. "A qualitative, patient-centered perspective toward plasma products supply chain network design with risk controlling," Operational Research, Springer, vol. 22(1), pages 779-824, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122001367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.