IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v18y2016i5d10.1007_s10796-016-9664-8.html
   My bibliography  Save this article

An algebra of temporal faults

Author

Listed:
  • André Didier

    (Cidade Universitária)

  • Alexandre Mota

    (Cidade Universitária)

Abstract

Faults modelling is essential to anticipate failures in critical systems. Traditionally, Static Fault Trees are employed to this end, but Temporal and Dynamic Fault Trees are gaining evidence due to their enriched power to model and detect intricate propagation of faults that lead to a failure. In previous work, we showed a strategy based on the process algebra CSP and Simulink models to obtain fault traces that lead to a failure. Although that work used Static Fault Trees, it could be used with Temporal or Dynamic Fault Trees. In the present work we define an algebra of temporal faults (with a notion of fault propagation) and prove that it is indeed a Boolean algebra. This allows us to inherit Boolean algebra’s properties, laws and existing reduction techniques, which are very beneficial for faults modelling and analysis. We illustrate our work on a simple but real case study supplied by our industrial partner EMBRAER.

Suggested Citation

  • André Didier & Alexandre Mota, 2016. "An algebra of temporal faults," Information Systems Frontiers, Springer, vol. 18(5), pages 967-980, October.
  • Handle: RePEc:spr:infosf:v:18:y:2016:i:5:d:10.1007_s10796-016-9664-8
    DOI: 10.1007/s10796-016-9664-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-016-9664-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-016-9664-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merle, G. & Roussel, J.-M. & Lesage, J.-J., 2011. "Algebraic determination of the structure function of Dynamic Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 267-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thouraya Bouabana-Tebibel & Stuart H. Rubin, 2016. "Towards common reusable semantics," Information Systems Frontiers, Springer, vol. 18(5), pages 819-823, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Daochuan & Lin, Meng & Yang, Yanhua & Zhang, Ruoxing & Chou, Qiang, 2015. "Quantitative analysis of dynamic fault trees using improved Sequential Binary Decision Diagrams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 289-299.
    2. Piriou, Pierre-Yves & Faure, Jean-Marc & Lesage, Jean-Jacques, 2017. "Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 57-68.
    3. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    5. Cui, L.X. & Du, Yi-Mu & Sun, C.P., 2023. "On system reliability for time-varying structure," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Daochuan Ge & Meng Lin & Yanhua Yang & Ruoxing Zhang & Qiang Chou, 2015. "Reliability analysis of complex dynamic fault trees based on an adapted K.D. Heidtmann algorithm," Journal of Risk and Reliability, , vol. 229(6), pages 576-586, December.
    7. Haiyue Yu & Xiaoyue Wu, 2021. "A method for transformation from dynamic fault tree to binary decision diagram," Journal of Risk and Reliability, , vol. 235(3), pages 416-430, June.
    8. Nguyen, T.P. Khanh & Beugin, Julie & Marais, Juliette, 2015. "Method for evaluating an extended Fault Tree to analyse the dependability of complex systems: Application to a satellite-based railway system," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 300-313.
    9. Daochuan Ge & Ruoxing Zhang & Qiang Chou & Yanhua Yang, 2015. "Probabilistic model–based multi-integration formulas for quantifying a generalized minimal cut sequence," Journal of Risk and Reliability, , vol. 229(1), pages 73-82, February.
    10. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    11. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
    13. Chiacchio, Ferdinando & Iacono, Alessandra & Compagno, Lucio & D'Urso, Diego, 2020. "A general framework for dependability modelling coupling discrete-event and time-driven simulation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:18:y:2016:i:5:d:10.1007_s10796-016-9664-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.