IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v51y2020i4d10.1007_s13226-020-0489-2.html
   My bibliography  Save this article

Hopf Bifurcation and Stability Switches Induced by Humoral Immune Delay in Hepatitis C

Author

Listed:
  • Sonjoy Pan

    (Indian Institute of Technology Guwahati)

  • Siddhartha P. Chakrabarty

    (Indian Institute of Technology Guwahati)

Abstract

The role of humoral immune delay on the dynamics of HCV infection incorporating both the modes of infection transmission, namely, viral and cellular transmissions with a non-cytolytic cure of infected hepatocytes is studied. The local and global asymptotic stability of the boundary equilibria, namely, infection-free and immune-free equilibrium are analyzed theoretically as well as numerically under the conditions on the basic reproduction number and the humoral immune reproduction number. The existence of Hopf bifurcation and consequent occurrence of bifurcating periodic orbits around the humoral immune activated equilibrium are illustrated. The findings show that Hopf bifurcation and stability switches occur under certain conditions as the bifurcation parameter crosses the critical values. Furthermore, the dynamical effect of the development rate of B cells is investigated numerically. The results obtained show that the system becomes unstable from stable and regains stability from instability depending on the development rate of B cells for a fixed delay value. Further, the results suggest that a high antigenic stimulation in humoral immunity is beneficial for uninfected hepatocytes with a significant reduction in virions density.

Suggested Citation

  • Sonjoy Pan & Siddhartha P. Chakrabarty, 2020. "Hopf Bifurcation and Stability Switches Induced by Humoral Immune Delay in Hepatitis C," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1673-1695, December.
  • Handle: RePEc:spr:indpam:v:51:y:2020:i:4:d:10.1007_s13226-020-0489-2
    DOI: 10.1007/s13226-020-0489-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-020-0489-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-020-0489-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Qing & Hu, Zhixing & Liao, Fucheng, 2016. "Stability and Hopf bifurcation in a HIV-1 infection model with delays and logistic growth," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 26-41.
    2. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    3. Li, Xiuling & Wei, Junjie, 2005. "On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 519-526.
    4. Narendra M. Dixit & Jennifer E. Layden-Almer & Thomas J. Layden & Alan S. Perelson, 2004. "Modelling how ribavirin improves interferon response rates in hepatitis C virus infection," Nature, Nature, vol. 432(7019), pages 922-924, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Sonjoy & Chakrabarty, Siddhartha P., 2022. "Analysis of a reaction–diffusion HCV model with general cell-to-cell incidence function incorporating B cell activation and cure rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 431-450.
    2. Mann Manyombe, M.L. & Mbang, J. & Chendjou, G., 2021. "Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Libin Rong & Jeremie Guedj & Harel Dahari & Daniel J Coffield Jr & Micha Levi & Patrick Smith & Alan S Perelson, 2013. "Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    4. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    5. Pranesh Padmanabhan & Narendra M Dixit, 2011. "Mathematical Model of Viral Kinetics In Vitro Estimates the Number of E2-CD81 Complexes Necessary for Hepatitis C Virus Entry," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-11, December.
    6. Pranesh Padmanabhan & Narendra M Dixit, 2012. "Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    7. Çalış, Yasemin & Demirci, Ali & Özemir, Cihangir, 2022. "Hopf bifurcation of a financial dynamical system with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 343-361.
    8. Miao, Hui & Abdurahman, Xamxinur & Teng, Zhidong & Zhang, Long, 2018. "Dynamical analysis of a delayed reaction-diffusion virus infection model with logistic growth and humoral immune impairment," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 280-291.
    9. Zhang, Tongqian & Xu, Xinna & Wang, Xinzeng, 2023. "Dynamic analysis of a cytokine-enhanced viral infection model with time delays and CTL immune response," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Kim, Kwang Su & Kim, Sangil & Jung, Il Hyo, 2018. "Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 1-16.
    11. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    12. Xu, Jinhu & Geng, Yan & Zhou, Yicang, 2017. "Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 62-83.
    13. Sun, Dandan & Teng, Zhidong & Wang, Kai & Zhang, Tailei, 2023. "Stability and Hopf bifurcation in delayed age-structured SVIR epidemic model with vaccination and incubation," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Mphatso Kalemera & Dilyana Mincheva & Joe Grove & Christopher J R Illingworth, 2019. "Building a mechanistic mathematical model of hepatitis C virus entry," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-26, March.
    15. Elaiw, Ahmed M. & Alshehaiween, Safiya F. & Hobiny, Aatef D., 2020. "Impact of B-cell impairment on virus dynamics with time delay and two modes of transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Santosh Kumar Sharma & Amar Nath Chatterjee & Bashir Ahmad, 2023. "Effect of Antiviral Therapy for HCV Treatment in the Presence of Hepatocyte Growth Factor," Mathematics, MDPI, vol. 11(3), pages 1-20, February.
    17. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    18. Lin, Jiazhe & Xu, Rui & Tian, Xiaohong, 2017. "Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 516-530.
    19. Wang, Luxuan & Niu, Ben & Wei, Junjie, 2016. "Dynamical analysis for a model of asset prices with two delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 297-313.
    20. Yang, Yu & Ye, Jin, 2009. "Hopf bifurcation in a predator–prey system with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 554-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:51:y:2020:i:4:d:10.1007_s13226-020-0489-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.