IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v305y2017icp62-83.html
   My bibliography  Save this article

Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy

Author

Listed:
  • Xu, Jinhu
  • Geng, Yan
  • Zhou, Yicang

Abstract

An age-structured within-host virus infection model with both virus-to-cell and cell-to-cell infection and antiretroviral therapy is investigated. The global stability analysis of the model is carried out in terms of the basic reproduction number R0 by constructing Lyapunov functionals. If R0≤1, the infection-free steady state is globally asymptotically stable; if R0>1, the infection steady state is globally asymptotically stable. The influence of drug therapy on cell-to-cell infection is discussed, which shows that cell-to-cell infection is important for the final outcome of the HIV virus infection and blocking cell-to-cell infection can effectively suppress the HIV virus spread. Moreover, numerical simulations are performed to study the dynamical behavior of solutions of the models. The results show that both the viral production rate and the death rate of infected cells play an important role in the viral dynamics of the model.

Suggested Citation

  • Xu, Jinhu & Geng, Yan & Zhou, Yicang, 2017. "Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 62-83.
  • Handle: RePEc:eee:apmaco:v:305:y:2017:i:c:p:62-83
    DOI: 10.1016/j.amc.2017.01.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317300905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.01.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    2. Alan S. Perelson & Avidan U. Neumann & Martin Markowitz & John M. Leonard & David D. Ho, 1996. "HIV-1 Dynamics In Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time," Working Papers 96-02-004, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Manoj & Abbas, Syed, 2022. "Global dynamics of an age-structured model for HIV viral dynamics with latently infected T cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 237-252.
    2. Lin, Jiazhe & Xu, Rui & Tian, Xiaohong, 2017. "Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 516-530.
    3. Zhang, Lidong & Wang, Jinliang & Zhang, Ran, 2024. "Mathematical analysis for an age-space structured HIV model with latency," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 595-617.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Haokun & Meng, Xinzhu, 2021. "Mathematical modeling, analysis and numerical simulation of HIV: The influence of stochastic environmental fluctuations on dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 700-719.
    2. Sutimin, & Wijaya, Karunia Putra & Páez Chávez, Joseph & Tian, Tianhai, 2021. "An in-host HIV-1 infection model incorporating quiescent and activated CD4+ T cells as well as CTL response," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    4. E Fabian Cardozo & Adriana Andrade & John W Mellors & Daniel R Kuritzkes & Alan S Perelson & Ruy M Ribeiro, 2017. "Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration," PLOS Pathogens, Public Library of Science, vol. 13(7), pages 1-18, July.
    5. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Sun, Hongquan & Li, Jin, 2020. "A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    8. Arthur, Joseph & Attarian, Adam & Hamilton, Franz & Tran, Hien, 2018. "Nonlinear Kalman filtering for censored observations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 155-166.
    9. Mojaver, Aida & Kheiri, Hossein, 2015. "Mathematical analysis of a class of HIV infection models of CD4+ T-cells with combined antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 258-270.
    10. Chávez, Joseph Páez & Wijaya, Karunia Putra & Pinto, Carla M.A. & Burgos-Simón, Clara, 2022. "A model for type I diabetes in an HIV-infected patient under highly active antiretroviral therapy," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    12. Yu Shi & Zizhao Zhang & Weng Kee Wong, 2019. "Particle swarm based algorithms for finding locally and Bayesian D-optimal designs," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-17, December.
    13. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    14. Precharattana, Monamorn & Triampo, Wannapong, 2014. "Modeling dynamics of HIV infected cells using stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 303-311.
    15. Pan, Sonjoy & Chakrabarty, Siddhartha P., 2022. "Analysis of a reaction–diffusion HCV model with general cell-to-cell incidence function incorporating B cell activation and cure rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 431-450.
    16. Zhang, Tongqian & Xu, Xinna & Wang, Xinzeng, 2023. "Dynamic analysis of a cytokine-enhanced viral infection model with time delays and CTL immune response," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    17. Heffernan, J.M. & Keeling, M.J., 2008. "An in-host model of acute infection: Measles as a case study," Theoretical Population Biology, Elsevier, vol. 73(1), pages 134-147.
    18. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. A. Adam Ding & Hulin Wu, 2000. "A Comparison Study of Models and Fitting Procedures for Biphasic Viral Dynamics in HIV-1 Infected Patients Treated with Antiviral Therapies," Biometrics, The International Biometric Society, vol. 56(1), pages 293-300, March.
    20. Mann Manyombe, M.L. & Mbang, J. & Chendjou, G., 2021. "Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:305:y:2017:i:c:p:62-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.