IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p751-d1054967.html
   My bibliography  Save this article

Effect of Antiviral Therapy for HCV Treatment in the Presence of Hepatocyte Growth Factor

Author

Listed:
  • Santosh Kumar Sharma

    (Department of Mathematics, K. L. S. College, Magadh University, Nawada 805110, Bihar, India
    These authors contributed equally to this work.)

  • Amar Nath Chatterjee

    (Department of Mathematics, K. L. S. College, Magadh University, Nawada 805110, Bihar, India
    These authors contributed equally to this work.)

  • Bashir Ahmad

    (Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
    These authors contributed equally to this work.)

Abstract

The effect of antiviral therapy during Hepatitis C Virus (HCV) infection is the focus of this study. HCV infection destroys healthy hepatocyte cells in the human liver, causing cirrhosis and hepatocellular carcinoma. We introduce a cell-population model representing the long-term dynamics of HCV infection in response to antiviral drug therapies. The proliferation of existing cells can create hepatocyte cells in the system. Such models are based on the dynamics of susceptible hepatocytes, infected hepatocytes and HCV with interactive dynamics, which can give a complete understanding of the host dynamics of the system in the presence of antiviral drug therapy. Infection-free equilibrium and endemic equilibrium are two equilibrium states in the absence of drugs. The existence and stability conditions for both systems are presented. We also construct an optimal control system to find the optimal control strategy. Numerical results show that the effects of the proliferation rate and infection rate are critical for the changes in the dynamics of the model. The impact of different weight factors on the optimal control problem is analysed through numerical simulation.

Suggested Citation

  • Santosh Kumar Sharma & Amar Nath Chatterjee & Bashir Ahmad, 2023. "Effect of Antiviral Therapy for HCV Treatment in the Presence of Hepatocyte Growth Factor," Mathematics, MDPI, vol. 11(3), pages 1-20, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:751-:d:1054967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narendra M. Dixit & Jennifer E. Layden-Almer & Thomas J. Layden & Alan S. Perelson, 2004. "Modelling how ribavirin improves interferon response rates in hepatitis C virus infection," Nature, Nature, vol. 432(7019), pages 922-924, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libin Rong & Jeremie Guedj & Harel Dahari & Daniel J Coffield Jr & Micha Levi & Patrick Smith & Alan S Perelson, 2013. "Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    2. Pranesh Padmanabhan & Narendra M Dixit, 2011. "Mathematical Model of Viral Kinetics In Vitro Estimates the Number of E2-CD81 Complexes Necessary for Hepatitis C Virus Entry," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-11, December.
    3. Pranesh Padmanabhan & Narendra M Dixit, 2012. "Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    4. Pan, Sonjoy & Chakrabarty, Siddhartha P., 2022. "Analysis of a reaction–diffusion HCV model with general cell-to-cell incidence function incorporating B cell activation and cure rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 431-450.
    5. Mphatso Kalemera & Dilyana Mincheva & Joe Grove & Christopher J R Illingworth, 2019. "Building a mechanistic mathematical model of hepatitis C virus entry," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-26, March.
    6. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    7. Luo, Yantao & Zhang, Long & Zheng, Tingting & Teng, Zhidong, 2019. "Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Sonjoy Pan & Siddhartha P. Chakrabarty, 2020. "Hopf Bifurcation and Stability Switches Induced by Humoral Immune Delay in Hepatitis C," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1673-1695, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:751-:d:1054967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.